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As climate change amplifies more volatile weather patterns, water
utilities face increasing difficulty in simultaneously ensuring revenue
feasibility, promoting water conservation, and protecting low-income
consumers. This paper tests and concludes that price alone cannot
achieve these competing policy goals under different weather patterns.
Using granular household data from Austin, TX, and a structural de-
mand model enhanced with satellite imagery-derived vegetation index,
I find that because high-water users exist across all income levels, tra-
ditional tiered pricing doesn’t work as intended. Furthermore, higher-
income households—who are both weather-sensitive and surprisingly
price-elastic—complicate the utility’s ability to achieve its distributional
objectives while meeting the conservation target. When high-demand
conditions (e.g., drought) make conservation measures necessary, low-
income families experience an average welfare loss of $74 per month.
This highlights the necessity of complementary policies to achieve distri-
butional goals when demand increases. For example, a program encour-
aging households to convert 30% of their lawns to water-saving land-
scapes (zeroscaping/xeriscaping) could generate approximately $70 per
month in welfare for the lowest-income families, nearly offsetting the fi-
nancial burden imposed by conservation policies during droughts.* Key-
words: Ramsey Pricing, Multi-part Tariff, Demand Volatility, Distribu-
tional Effect

I. Introduction

The increasing variability of weather patterns, exacerbated by climate change, poses a
significant challenge to the pricing of essential utility services, particularly water. Urban
water utilities face a complex balancing act, primarily managed through their rate struc-
tures: they must ensure financial sustainability through cost recovery, promote resource
conservation amid dwindling supplies, and maintain equitable access for all consumers,
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especially low-income households. This study focuses on these challenges within the
context of Austin, Texas—a rapidly growing metropolitan area known for its highly
variable precipitation. The primary objective of this paper is to develop and empirically
implement an optimal water pricing framework, grounded in Ramsey principles and tai-
lored for an Increasing Block Price (IBP) tariff, that explicitly accounts for and remains
resilient while achieving policy goals related to financial feasibility, conservation, and
distributional equity under extreme weather patterns.

The theoretical underpinning for many utility pricing schemes stems from Ramsey
(1927), who proposed “second-best” solutions to cover large fixed costs while minimiz-
ing societal welfare loss, typically through an inverse elasticity rule. In practice, utilities
often adopt IBP tariffs, where prices rise with consumption, to encourage conservation
among high-volume users while ensuring affordability for basic needs. However, the
efficacy of IBP structures is predicated on the assumption that high consumption corre-
lates with high income and low price elasticity—an assumption severely tested by un-
predictable weather. A critical operational constraint is that utility prices are typically
preset for an entire year, lacking the flexibility to adjust to monthly or seasonal weather
variations. This means a single, static IBP structure must bear the burden of achiev-
ing all policy goals, from mitigating excessive usage during dry months to offsetting
revenue loss during wet months, all while addressing distributional concerns. This pa-
per first offers reduced-form evidence of consumer sensitivity to precipitation and then
structurally estimates demand under nonlinear IBP using a Discrete/Continuous Choice
(DCC) model.

Previous literature has explored the complex nature of estimating public utility de-
mand and the welfare impacts of IBP optimization. Hewitt and Hanemann (1995) and
Olmstead, Hanemann and Stavins (2007) use DCC models to estimate price elasticity
in urban water demand. Some studies, such as Castro-Rodrı́guez, Marı́a Da-Rocha and
Delicado (2002) and Nataraj and Hanemann (2011), have shown that demand is respon-
sive and that specific IBP changes can generate welfare improvements. In particular,
Szabo (2015), examining South Africa’s free water policy, demonstrated that nonlinear
pricing alone can improve welfare and conservation goals without relying on ad-hoc
subsidies. Though these studies have demonstrated that IBP can meet the conservation
policy while maximizing consumer and producer surplus, the distributional effect of IBP
has been less discussed, likely due to the lack of granular data. Recently, with more de-
tailed data, research has been highlighting the potential shortcomings of relying heavily
on IBP as a policy instrument, particularly regarding the distributional goal. Borenstein
(2009) and Ito (2014) found that consumers appear to react more to average prices than to
the marginal prices of multiple tiers, and households that usually have less understanding
of the complex pricing structure are likely to have lower income levels. Ruijs (2009) and
Echeverri (2023), while acknowledging that consumers respond to IBP changes, directly
evaluate the distributional effect of IBP restructuring and concluded that higher-income
households usually gain higher welfare through IBP price changes.

This paper fills a gap in the literature by exploring the effectiveness of IBP as a price
instrument under the strain of different weather patterns. I align closely with Wolak
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(2016), who employed a Ramsey-style model to determine an optimal IBP structure for
welfare maximization. However, to my knowledge, this paper is the first to develop and
empirically apply a Ramsey-style optimal pricing model that uniquely incorporates dif-
ferent exogenous weather patterns—both in terms of mean shifts and variance shifts—to
“stress test” the efficacy of IBP, and to prepare the utility’s policy goals under all types
of weather conditions. Furthermore, the demand estimation is enhanced by the novel in-
tegration of high-resolution (10m× 10m) satellite-derived Normalized Difference Veg-
etation Index (NDVI) data. My descriptive analysis and the structural DCC model re-
veal that, contrary to common assumptions, high-quantity users exist across all income
strata and that higher-income households can exhibit greater price elasticity, particularly
when weather pushes the demand curve rightward. This finding introduces significant
challenges for the utility relying solely on IBP to achieve its distributional goals when
weather pushes the demand curve to the right, while conserving resources.

This research also relates to the industrial organization literature on firms’ responses to
weather-induced demand volatility, such as Lin, Schmid and Weisbach (2017) and Baum-
gartner et al. (2022), and to research about the social consequences of real-time electric-
ity pricing by Holland and Mansur (2008) and the heterogeneities of social marginal
cost caused by weather by Borenstein and Bushnell (2022). The latter two papers about
electricity pricing also discussed the utility’s conservation policy goal under volatile de-
mand, but they focused on how frequently pricing should change in response to volatile
demand, a unique feature that is more feasible in electricity pricing.1 This paper takes
the inflexibility of price change within a year as an exogenous political constraint, and
extends the existing paper by adding the specific concern regarding the distributional ef-
fects of pricing, on top of the environmental concerns, by exploiting the weather-induced
heterogeneity of urban residential water demand.

Lastly, this paper contributes to a growing literature evaluating the distributional ef-
fects of climate-related policies (Parry and Williams III (2010), Goulder et al. (2019),
Känzig (2023))in both the field of industrial organization and macroeconomics, which
has often found such policies to be regressive. Instead of targeting a specific green policy,
this paper extends this strand of literature by evaluating how much of the regressiveness
could be controlled by the utility’s policy goal, and how much of it is exogenous and
caused by weather. This disentanglement allows me to quantify the shadow cost of the
conservation policy goal towards lower-income households and the trade-off between the
policies of conservation and the distributional effect through price under various weather
patterns.

I find that when weather pushes the demand curve to the right (e.g., drought), price
alone struggles to improve, or even maintain, the distributional effect due to the binding
conservation constraint. When demand shifts rightward due to drought or high weather
variance, the conservation constraint imposes an average welfare loss of $74.2 and $74.9
per household per month for the lowest-income stratum, respectively. However, when
demand shifts leftward due to more precipitation or low weather variance, the optimal

1Due to existing industry norms (like peak and valley pricing), consumers are more likely to accept real-time elec-
tricity pricing, and the utility will face less political consequences, as oppose to water utility.
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price helps the lower-income stratum gain an average welfare of $45.3 and $48.5, respec-
tively.2 The estimated shadow cost of the conservation policy during drought can inform
the design of complementary policies to achieve distributional objectives. For example, a
30% household zeroscaping/xeriscaping3 effort could generate $75 in welfare per house-
hold per month for the lowest-income stratum, almost nullifying the welfare loss from
the conservation policy’s shadow cost.

The remainder of this paper is structured as follows. Section II provides background on
water utility pricing in Austin, TX, discusses the inherent challenges posed by volatile
weather, describes the datasets utilized, and presents descriptive evidence. Section III
details the development of the structural demand model, a Discrete/Continuous Choice
model, explains the estimation strategy incorporating household characteristics, weather
variables, and NDVI data, and presents the key estimation results, including price and
income elasticities, their heterogeneities, and how weather shifts the demand curve. Sec-
tion IV establishes the theoretical Ramsey pricing model, extends it to incorporate con-
servation policy constraints, and outlines the empirical model used to determine optimal
IBP parameters. Section V presents the counterfactual analysis, where I estimate opti-
mal prices and their welfare consequences under various shifts in precipitation patterns
(both mean and variance shifts) and simulations, disentangling the shadow costs of the
policy constraints from extreme weather conditions for the lowest income stratum. I then
estimate the welfare effect of zeroscaping, targeted to improve the welfare of the lowest
income stratum. Finally, Section VI concludes the paper by summarizing the main find-
ings, discussing their broader policy implications for water resource management in an
era of climate change, and suggesting avenues for future research.

II. Water Utility Pricing

In this section, I introduce water utility pricing in Austin, TX, and detail the challenges
water utilities generally face under volatile weather conditions. This includes the current
pricing structure and the policy goals utilities set to achieve, noting in particular that the
price structure is often predicated on an assumed correlation between household income
and consumption levels/price elasticities. Subsequently, I present the datasets used and
examine whether these assumptions could hold, and spotlight the challenges faced by the
utility’s pricing decision under volatile weather.

A. Utility Pricing and Increasing Block Pricing (IBP)

A utility company, typically a natural monopoly with large fixed costs, faces a clas-
sic challenge outlined in Ramsey’s pricing problem (from Ramsey (1927)): pricing at
marginal cost, though efficient, would not cover its total costs, rendering the “first-best”
solution infeasible. Ramsey proposed a “second-best” solution to meet the company’s fi-
nancial requirements while minimizing the reduction in social welfare. This price-setting

2This is due to the less demanding revenue goal set by Austin Water. A different utility with a more pressing revenue-
feasible requirement could also cause welfare losses for the lower-income households.

3An effort to remove water-intensive vegetation to save more water.
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solution is known as the inverse elasticity rule, where prices are higher for consumers
with lower price elasticity, as inelastic demand causes smaller reductions in consump-
tion and thus smaller welfare distortions. In the case of a water utility, where major
costs are fixed (e.g., reservoir management, purification, and distribution infrastructure)
while the marginal cost per household is relatively small, Ramsey pricing helps ensure
the utility’s financial viability while maximizing consumer welfare.

In addition to ensuring cost recovery, the utility must also meet its policy goals. Typ-
ically, the utility must consider two major policy objectives: 1) resource conservation
and 2) the distributional effect of the price. With limited natural resources, the utility
is encouraged to reduce total consumption—a constraint that has become more pressing
with dwindling supply caused by climate change. On the other hand, the utility must also
ensure that water remains affordable for low-income consumers’ basic needs. Therefore,
the optimal price must strike a balance: it cannot be so high as to be unaffordable for
low-income households, nor so low as to jeopardize revenue and encourage excessive
consumption.

A common practical solution is to adopt a multi-part tariff with Increasing Block Pric-
ing (IBP), which categorizes consumers into tiers based on their consumption. For all
tiers, the final bill consists of a fixed charge (or access fee) to cover fixed costs and a vol-
umetric charge (or usage fee) based on consumption to cover marginal costs. In an IBP
structure, both the fixed and volumetric charges typically increase with higher tiers. For
the volumetric charge, consumers pay a lower marginal price on consumption up to each
kink point and a higher marginal price only on the amount exceeding it. This structure
encourages high-quantity users to conserve, while lower-quantity users can benefit from
a low marginal price (often below marginal cost). Predicated on the assumption that
higher-quantity users typically have higher incomes and lower elasticities, IBP can be
interpreted as an empirical application of Ramsey pricing that also addresses the policy
goals of conservation and equity.

For this paper, I am going to specifically examine the efficacy of IBP in the context
of various weather patterns. For the electricity utilities, pricing with the existing policy
goals would be difficult to balance under unexpected heat waves, in addition to regular
seasonal demand cycles. For the water utilities, volatile weather will cause complexities
in pricing decisions as well. Urban household water usage is highly correlated to pre-
cipitation for single-family homes, where lawn watering constitutes a major portion of
water consumption, far larger than essential usage like cooking, showering, and washing.
Low precipitation (dry months) encourages much higher water usage, while high precip-
itation (rainy months) reduces usage as households may not need to use extra water for
lawn watering. Therefore, for cities like Austin, where high precipitation events can oc-
cur randomly throughout the year4, it is important to design the IBP with the policy goals
of conservation and maintaining financial viability to prepare for all weather situations,
and the results derived from this paper can be applied to public utilities in general, as
both electricity and water utilities have similar policy goals and unpredictable demand

4For Austin, and many cities in Texas, high rainfall months could happen in any months between March to June, and
September to November. These months could equally have low rainfall due to some years with a longer summer season.
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through volatile weather.
The importance of setting the price for all weather conditions creates another price-

setting challenge for utilities, as the price typically cannot change from month to month.
While economists typically suggest dynamic pricing, such as that used in ride-sharing
services, to combat volatile demand, in the case of water utility pricing, the price must
be preset for the entire year and cannot change within a certain time period. This in-
ability to adjust prices in response to weather stochasticity is specifically what this paper
addresses.5

B. Water Utility Pricing in Austin, TX

For this paper, I use water utility transaction data from Austin, TX. The water utility
in Austin is managed solely by Austin Water, a public entity and natural monopoly. All
operations—from water supply management in Lake Travis to purification, transport,
wastewater processing, and price setting—are managed by Austin Water. This means
Austin Water acts as a social planner aiming to maximize welfare while pursuing policy
goals, making a Ramsey pricing framework highly suitable for analysis.

Austin, and Texas in general, are known for unpredictable precipitation. A report by
Nielsen-Gammon et al. (2020) noted that future precipitation trends in Texas are likely to
be dominated by largely unpredictable natural variability and a projected increase in the
intensity and frequency of extreme rainfall events. This makes the price-setting challenge
more acute, as it is difficult to predict which months will be wet or dry, rendering preset
price discrimination based on seasonality nearly impossible. In Austin, as shown in
Figure A1 using NOAA data, recent precipitation has become more erratic compared to
the 30-year average. This trend, combined with Austin’s rapid population growth, makes
residential water conservation an increasingly pressing issue.6

The problem faced by Austin Water is not unique. Many U.S. cities face the combined
pressures of volatile weather, growing populations, and dwindling natural water supplies
due to climate change.7 This paper aims to test whether a Ramsey-style pricing solu-
tion can achieve the policy goals of conservation and distributional equity under volatile
weather. I utilize a panel dataset from Austin Water for approximately 120,000 house-
holds from May 2018 to December 2019, public data from the Travis County Appraisal
District, weather data from NOAA, and high-resolution (10m× 10m) satellite imagery
capturing household vegetation health. These data sources are detailed in Section III.B.

Austin Water’s current pricing uses a five-tier IBP structure, detailed in Table A1. This
design aims to improve distributional outcomes and encourage conservation by setting
higher marginal prices and fixed payments for higher-quantity users. This is based on
the assumption that higher-quantity users are correlated with higher income levels, have

5Some may question the reason behind this inability to implement dynamic pricing, and there are deeper reasons that
need further discussion in political economy. There is simply a lack of industrial convention to deploy dynamic pricing
in water utilities on a monthly basis. The unpredictability of which month will be wet or dry also makes it difficult to
proactively set up a stable pricing rule (such as price discrimination by summer and winter months).

6According to recent census data, the Austin metro area is one of the fastest-growing regions in the U.S.
7The EPA confirms that hourly rainfall rates and the intensity of heavy precipitation events have increased across

most of the U.S. since the 1970s.
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lower price elasticities, and can afford higher prices. To better measure distributional
effects, I segment households into five income strata, aligning with the five-tier price
structure, to analyze how policies affect different economic groups (see Figure A.A1).

C. Descriptive and Reduced-Form Evidence

To study the impact of volatile weather on the utility’s price-setting problem and the
challenges its policy goals present, I will first test the assumption of a correlation between
income and quantity.

Figure 1. : Households Income Strata Composition for Each Tier

Figure 1 showcases the distributions of the average monthly quantity for each house-
hold, and the composition of the income strata for each tier. There are more house-
holds from the highest stratum that consume in the highest tier (> 20k Gal). However,
more than 3000 households from the lowest strata consume on average in the highest
tier, which should be mostly occupied by households from higher strata. This under-
mines the premise that lower marginal prices in lower tiers effectively target low-income
households for distributional benefits, and this omnipresence of high-quantity consumers
across all income strata poses a challenge for using IBP to achieve equity goals.

In addition, to understand the impact of weather, I examine the correlation between
weather changes and quantity changes from May 2018 to December 2019. To account
for seasonality, I calculated the monthly difference in precipitation (∆ Precipitation) and
temperature (∆ Temperature) relative to their 30-year averages (1990-2020). Using panel
data, I then calculated the percentage deviation of a household’s monthly consumption
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from its historical average for that same month. I am particularly interested in how
monthly weather deviations influence this quantity deviation and how the effect differs
across income strata.

Figure 2. : Quantity Change (%) by Weather Deviation for each Income Strata

We can see that higher-than-usual precipitation typically leads to lower-than-usual
consumption. However, the percentage deviation is greater for high-income households,
likely reflecting higher demand for outdoor water use. A similar, though less pronounced,
effect appears to exist for temperature. A reduced-form analysis of ∆ Precipitation, ∆

Temperature, and their interactions with income strata on quantity deviation (see Table
A3) confirms these patterns.

Based on the results, higher income strata tend to have a lower baseline percentage
deviation from their usual consumption (when weather differences and marginal price
are zero) compared to the lowest income group. However, higher income strata (> 6k)
show a stronger negative response to increases in precipitation difference. The linear
response to temperature difference is less clear-cut across strata in this model; while the
base effect for the reference group is positive, higher income groups show interactions
that temper this positive effect, resulting in less positive linear sensitivity compared to the
low-income strata. Due to this unclear effect from the reduced-form analysis, coupled
with the intrinsic correlation between precipitation and single-family home water usage,
I will focus on the impact of changing precipitation for the rest of the paper and observe
the shifts in consumer behavior.

This heightened weather sensitivity among higher-income households is somewhat
counterintuitive and challenges the assumption that they have uniformly low price elas-
ticity. This creates potential complexities for designing an optimal pricing structure that
can meet all policy goals under volatile weather. To accurately evaluate counterfac-
tual prices and revenue risks, it is crucial to measure how behavior changes in response
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to price, precipitation, income, and their interactions. Therefore, a structural model is
needed to incorporate the full vector of household characteristics—a necessity given the
limited price variation in the dataset—followed by an empirical Ramsey model that con-
siders weather stochasticity to estimate the optimal IBP.

III. Demand Model and Estimation

In this section, I develop the demand model for the water utility to estimate the pa-
rameters needed for optimal price calculation and counterfactual analysis. As noted
earlier, residential water demand typically faces an IBP structure, meaning that the non-
linear budget constraint generated must be accounted for. Therefore, I utilize a Dis-
crete/Continuous Choice (DCC) model estimated via Maximum Likelihood to estimate
the conditional demand probabilities for each pricing tier for each household, thereby
accurately estimating the demand parameters.

Each household chooses between water consumption and a numeraire good subject
to its budget constraint. The pricing scheme creates a nonlinear budget constraint, and
I focus exclusively on the IBP structure in this paper. I assume a log-log functional
form relating demand to prices and income, which is a common assumption in the water
demand estimation literature.

The first paper to introduce a demand model handling piece-wise linear budget con-
straints arising from price nonlinearity was Burtless and Hausman (1978) in the context
of labor supply. Dubin and McFadden (1984), Hanemann (1984) and Hewitt and Hane-
mann (1995) laid the groundwork for applying the DCC model to residential utility de-
mand (with Hewitt and Hanemann (1995) specifically addressing water demand). Our
approach largely follows this established model structure, with minor modifications, to
maintain interpretability.

A. Demand Model

The demand model assumes each household consumes both water (w) and a numeraire
good (Y ) (with price = 1), and the household’s total monthly income is I. Suppose for an
IBP, the marginal price for each tier k is pk, the fixed payment is Ak, and the cutoff point
between tier k and k+1 is qk. Due to the nature of IBP and suppose there are a total of K
tiers, pk+1 ≥ pk, Ak+1 ≥ Ak, qk+1 ≥ qk ∀k ∈ {0,1, . . . ,K}. Together {pk,qk,Ak}K

k=1 fully
identify the nonlinear pricing structure. Throughout this section, the demand for every
month should have a subscript of t, but for simplicity, the time-level subscript will be
omitted.

Condition on the household choosing the optimal tier to be k ≤ K and the starting price
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p0 = 0, the household’s budget constraint is:

I = A1 + p1w+Y (if k = 1)
I = Ak + p1q1 + p2(q2 −q1)+ · · ·+ pk−1(qk−1 −qk−2)+ pk(w−qk−1)+Y (if k > 1)

= Ak +
k−1

∑
j=1

(p j − p j+1)q j + pkw+Y

pkw+Y = I −Ak −
k−1

∑
j=1

(p j − p j+1)q j

(1)

Therefore, given the IBP pricing structure, the only way to maintain the typical utility
maximization problem with a budget is to add the additional term on the income such
that the Virtual Income is equal to I +dk, where the correction term dk is defined as:

dk =−A1 (if k = 1)

dk =−Ak −
k−1

∑
j=1

(p j − p j+1)q j (if k > 1)
(2)

The concept of Virtual Income is used to correctly model consumer choice under a
tiered pricing system. When a household’s consumption is in a higher tier, k, the ini-
tial “blocks” of consumption (tiers 1 through k − 1) are purchased at lower marginal
prices. To simplify the analysis, we can treat the consumer’s choice problem as if they
face a single marginal price, pk, for all units. For this simplified model to yield the same
utility-maximizing choice, the consumer’s income must be adjusted upward to account
for the savings on the initial, lower-priced blocks.8To visually illustrate, consider a sim-
pler model with 2 tiers without loss of generality:

Since consuming at a higher tier will grant paying the lower quantity portion at a
lower marginal price, the correction term dk (which will be > 0 in the higher tier given
that pk ≤ pk+1 ∀k and Ak is not too large) has an income effect on the overall budget set.
This correction term will allow us to solve for the utility maximization problem using
the marginal price for each tier without causing any trouble.

Define the utility function for the household between water and numeraire good to be
U(w, I). Condition on tier k being the optimal choice for the household, define the condi-
tional water demand function to be g(pk, I), where the functional form will be introduced
later. Then the conditional indirect utility function for tier k is:

V (pk, I) = max
w

U(w, I − pkw)

=U(g(pk, I), I − pkg(pk, I))
(3)

8This additional income, often denoted as dk , can be considered an income effect. It allows the household to be
modeled as if it faces the marginal price pk across all quantities, even though the initial blocks were purchased more
cheaply.
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Figure 3. : Virtual Income I +d2 when K = 2

For general U and budget sets, there will be a case where the household will have multi-
ple optimal tiers such that the conditional indirect utility function is not unique. However,
fortunately, given the case of IBP, Hausman (1979)’s theorem showed that if the budget
set is convex, the optimal tier will be unique. In addition, the concavity of the utility
function U will make sure the optimal consumption point g(pk, I) resides in the specific
quantity boundaries of each tier. Therefore, without loss of generality, the unconditional
indirect utility function for the total tier K = 2 is defined as:

V (p, I) =


V (p1, I) if q1 ≥ g(p1, I)
V (p2, I +d2) if q1 < g(p2, I +d2)

U(q1, I −A2 − p1q1) if g(p2, I +d2)≤ q1 < g(p1, I)
(4)

The form of the unconditional indirect utility function can be expanded towards a more
general case. I would like to highlight the case of g(p2, I +d2) ≤ q1 < g(p1, I) to make
sure the Incentive Compatibility constraints are satisfied throughout the entire quantity
line. The reason for the inclusion of this case is explained in detail in Section A.A2.

So far, I have covered the decision process of the household’s water demand, in which
they solve for a utility maximization problem and solve for g(pk, I) for all k, and choose
the k that maximizes their utilities only with the assumption that the demand function
is concave without imposing any functional form on the demand function. A typical
functional form used by recent literature of water demand is a log-log demand function9,

9A couple of relatively recent examples of using this functional form for water demand are Hewitt and Hanemann
(1995), Olmstead, Hanemann and Stavins (2007), and Wolak (2016). Others, like Szabo (2015) used a linear demand
function.
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I will use the same approach as the data of water quantity wi is very right-skewed with
only positive values. Therefore, a better parametric assumption for the distribution of
wi should be log normal, which will induce a log-log demand function. With vectors of
household characteristics X and weather Z, the conditional indirect utility function for
tier k has the functional form of:

(5) V (pk, I +dk,β ) =−exp(β ′
1X +β

′
2Z + c+ ε)

p1−α

k
1−α

+
(I +dk)

1−ρ

1−ρ

This functional form, combined with Roy’s Identity, will give us the log-log demand
form for tier k:

(6) log(g(pk, I +dk)) = log(wk) = β
′
1X +β

′
2Z −α log pk +ρ log(I +dk)+ c

where dk is defined in Equation 2, α is the log price effect, ρ is the log virtual income
effect, and c is the constant. The observed log consumption includes unobservables ε:
log(w) = log(wk)+ ε . Following the same parametric assumption of Olmstead, Hane-
mann and Stavins (2007), the unobservables have two terms ε = η + ν . η ∼ N(0,σ2

η)
represents the household-level heterogeneity observed by households (e.g., preferences),
while ν ∼ N(0,σ2

ν ) represents the household-level perception/optimization error that is
unobserved by households even ex-post. The idea is that it is nearly impossible for
a household to precisely consume the water quantity (wk) they would ideally demand
given their preferences. For instance, there will always be extra cold water down the
drain when she demands warm and hot water, for example. For all households, they are
risk-neutral with E[ν ] = 0 ∀k. Neither the error terms are observed by the econometri-
cian, hence the parametric assumption. In addition, this parametric assumption can allow
us to derive a closed-form likelihood function for MLE. Given the structure of the error
term, the unconditional ex post water demand after the realization of the error term is:

log(w) =



log(w1)+η +ν if η ≤ log(q1)− log(w1)

log(q1)+ν if log(q1)− log(w1)< η ≤ log(q1)− log(w2)

log(w2)+η +ν if log(q1)− log(w2)< η ≤ log(q2)− log(w2)

log(q2)+ν if log(q2)− log(w2)< η ≤ log(q2)− log(w3)

. . .

log(qK−1)+ν if log(qK−1)− log(wK−1)< η ≤ log(qK−1)− log(wK)

log(wK)+η +ν if log(qK−1)− log(wK)< η

(7)

and the likelihood function for the observed water demand wi for household i (omitting i
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subscript below for brevity) given the parametric assumption of η ,ν is:

f (wi|X ,Z) =
K

∑
k=1

 1√
σ2

η +σ2
ν

φ(sk)(Φ(rk)−Φ(nk))+
1

σν

φ(uk)(Φ(mk)−Φ(tk))


where

tk = (log(qk)− log(wk))/ση

rk = (tkση −ρssk

√
σ2

η +σ2
ν )/(ση

√
1−ρ2

s )

ρs = ση/
√

σ2
η +σ2

ν

sk = (log(wi)− log(wk))/
√

σ2
η +σ2

ν

nk = (mk−1ση −ρssk

√
σ2

η +σ2
ν )/(ση

√
1−ρ2

s )

mk = (log(qk)− log(wk+1))/ση

uk = (log(wi)− log(qk))/σν

where Φ is standard normal cdf and φ is standard normal pdf.
and q0 = 0,qK = ∞,wk = g(pk, I +dk) is defined implicitly via Equation 6

(8)

Empirically, this likelihood function is used to calculate the likelihood of the observed
water consumption wi given the model parameters (α,ρ,β ′

1,β
′
2,c,ση ,σν ) and data (Xi,Zi,

pk,qk,Ak, Ii).10 The derivation of the likelihood function is explained in a 2-tier case in
Section A.A2 without loss of generality.

B. Empirical Model and Data

In this subsection, I outline the empirical model, based on the demand function (Equa-
tion 6) and the likelihood function (Equation 8), and describe the data used for maximum
likelihood estimation.

The core dataset consists of panel data detailing monthly water transactions for single-
family households in Austin, TX, from 2018-2019. These data include payments, total
water usage, the billing date for each month, and the household’s longitude and latitude.
The data were provided by Austin Water, the public utility monopoly responsible for
water services in Austin.

To operationalize the demand function, I incorporate supplemental datasets. These in-
clude two variables in the household characteristics matrix (X): the number of bathrooms
per household and the time-variant household Normalized Difference Vegetation Index
(NDVI). The number of bathrooms serves as a proxy for indoor water usage, while NDVI

10In the actual empirical model, I increase the flexibility by adding interaction term of price effect and income effect,
therefore α is a function depends on parameter β ′

3,β
′
4, cα and data Xα , Zα , and ρ is a function depends on parameter β ′

5,
cρ and data Xρ , Zρ . The details will be discussed in Section III.B.
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accounts for outdoor water usage, which is typically larger in volume and more sensitive
to weather variations. The application of NDVI to water demand analysis was intro-
duced by Wolak (2016). It aims to approximate lawn watering habits, as higher NDVI
values indicate healthier vegetation, suggesting greater watering efforts by the house-
hold. Details on constructing and interpreting NDVI can be found in Section A.A2.
For the time-variant weather matrix (Z), I include the monthly average maximum daily
temperature, the monthly interquartile range (IQR) of maximum daily temperature, total
monthly precipitation, and the monthly IQR of total precipitation.11

To enhance model flexibility, I allow the log price effect (α) and the log virtual income
effect (ρ) to depend on household characteristics and weather conditions, thereby gener-
ating interaction terms. Specifically, α depends on the number of bedrooms, household
NDVI, monthly average maximum daily temperature, and total monthly precipitation. ρ

depends on the number of bedrooms, NDVI, and the number of heavy water-use appli-
ances (including pools, hot tubs, sprinkler systems, fountains, and car washes).12

All other household characteristics, except for NDVI, were collected from public data
provided by the Travis County Appraisal District (TCAD). I use data from 2018 to match
the time frame of the transaction data. The TCAD data also include addresses, which
were matched via geo-spatial analysis with the longitude and latitude data from Austin
Water. I also collected lot size data from TCAD. Weather data were collected from the
National Oceanic and Atmospheric Administration (NOAA), using data from approx-
imately 120 weather stations in Austin. Since NDVI and weather data are collected
on a calendar month basis, while household water billing cycles do not typically align
with calendar months, I prorate both the weather and NDVI data to match each house-
hold’s billing cycle.13 Household income data were estimated using zipcode-level aver-
age homeowner income data from the IRS combined with normalized household value
data from TCAD, under the assumption that the normalized variance of household values
within each zipcode mirrors the variance of household income.

After matching all datasets and eliminating outliers, the final sample consists of 127,323
households with 2,345,742 transaction records. Summary statistics can be found in Sec-
tion A.A2.

C. Estimation Result and Identification

After conducting the maximum likelihood estimation using Equation 8 with k = 5 and
the data discussed in Section III.B, the final estimation results can be found in Table A5.

With the panel data, both time-variant and time-invariant variables provide significant
heterogeneity among households and across different months. This helps identify the pa-
rameters associated with household characteristics, income, and their interaction terms.
Moreover, for weather variables, instead of using weather data for the entire city, I found

11Note that both IQRs account for the spread of the data within each month, which differs slightly from what I mean
by growing weather variance, namely the increasing variance of weather patterns within a year.

12In practice, I used α = exp(β ′
3Xα +β ′

4Zα + cα ), and ρ = β ′
5Xρ + cρ to maximize the bias-variance trade-off of the

estimation results. Regardless of the functional form, the expansion of both α and ρ is to provide flexibility in identifying
heterogeneity of price effect and virtual income effect of the households, through the interaction terms.

13This practice was first introduced by Train et al. (1984).
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the closest weather station for each household to introduce small variations, providing
heterogeneity to help identify the weather parameters. Nevertheless, identifying the price
effect and its interaction terms presents a challenge, as there is little or no price variation
(neither through time nor geography) in the data. Another concern highlighted in past
literature (e.g., Borenstein (2009); Ito (2014)) is that households may not react to the
observed marginal price, as prices and the total payment amount are typically observed
only after the billing cycle ends; instead, they might respond to the average price they
face.

Fortunately, both of these identification concerns regarding price parameters in the
DCC model have been addressed by Olmstead (2009). She demonstrated that each
household, for each month, is optimizing over the entire price schedule. Consequently,
the econometrician can recover the parameter estimates, along with the probabilities that
households consume on each of their budget segments and at each kink point, directly
from the DCC model results. In addition, the DCC model is estimated without ever
determining the ‘observed’ marginal price of consumption – all the prices and the kink
points enter the likelihood function, regardless of where consumption is actually ob-
served. Olmstead (2009) also pointed out that price elasticity estimation has smaller
bias when using the DCC model if variation in demand is driven primarily by house-
hold preferences (η) instead of the perception error (ν), and our estimation results align
with this requirement, showing that ση is much larger than σν . Furthermore, the model
generates less bias if the existing price jumps between different tiers are sufficiently
salient. Although there is no definite conclusion on how salient the price jump is needed
to minimize the estimation bias, the marginal price differences between tiers in Austin
are among the largest in the US14.

To further address the price elasticity identification challenge, I also utilize data from
a small category of consumers enrolled in the Consumer Assistance Program (CAP).
Based on certain income requirements, these consumers enjoy lower marginal prices (see
Section A1). Although the variation is small, these consumers provide a small degree of
price variation to aid in the identification of price elasticity.

Another potential endogeneity issue involves the use of NDVI, as the NDVI of a given
calendar month could be the result of water usage in that same period. Therefore, I used
a lagged term for NDVI, meaning that water demand this month is dependent on the
previous month’s NDVI. The idea is that households decide how much water to consume
this month based on the health of their lawn vegetation last month. A higher previous
month’s NDVI may indicate the household takes more care of its lawn, helping to account
for variations in outdoor water usage.

Based on the identification strategy discussed above, I now discuss the price and in-
come elasticity derived from the DCC model. Due to the nonlinear pricing structure, I
cannot directly use α and ρ to calculate price and income elasticities. Instead, by follow-
ing Olmstead, Hanemann and Stavins (2007), I use a simulation-based approach. For a
small number ξ , I calculate how expected demand changes in response to a small change

14See https://bseacd.org/conservation-based-rate-structures/ for ”Conservation-Based Rate Struc-
tures” - Barton Springs/Edwards Aquifer Conservation District

https://bseacd.org/conservation-based-rate-structures/
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in the status quo marginal price (p0), holding income (I) and other factors constant.15

The formula for price elasticity is as follows, where the same structure applies to income
elasticity:

Price Elasticity: (E[g((1+ξ )p0, I)]−E[g(p0, I)])/(ξ E[g(p0, I)])(9)

The median price elasticity is estimated to be −0.395. Compared to previous literature
that uses the structural DCC model for Increasing Block Pricing (IBP) in developed coun-
tries, our estimate is within the range of Pint (1999)’s estimations (−1.24 ∼−0.04) and
more strictly, Olmstead, Hanemann and Stavins (2007)’s estimations (−0.59 ∼ −0.33).
Our estimate is more inelastic compared to Hewitt and Hanemann (1995)’s (−1.63 ∼
−1.57). Our estimate is also close to that of Olmstead (2009) (reporting -0.609 for a spe-
cific DCC model specification, using data from 11 cities with diverse weather patterns)
and Strand and Walker (2005) (−0.3 ∼−0.1, using data from 17 cities in Central Amer-
ica, where water demand was primarily for indoor usage). The median income elasticity
is estimated to be 0.112, which is close to estimations from previous literature for devel-
oped countries, such as Olmstead, Hanemann and Stavins (2007) (0.1786 ∼ 0.1865) and
Olmstead (2009) (0.1865).

To further explore the heterogeneities of price elasticities across income strata, I plot
the empirical density of the price elasticities for all 5 income strata.

Figure 4. : Price Elasticity Density by Income Strata

There are very few heterogeneities of price elasticity across income strata, showcasing

15Additionally, due to the flexibility of the price elasticity function, I limit the sample for empirical analysis to the
year 2019, as opposed to from demand estimation, I used data from Jun. 2018 to Dec. 2019. This approach helps avoid
overestimating the more rainy summer months of 2018.
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that the assumption that higher income households with higher consumption will have
low elasticities is not correct, breaking the premise of using IBP to achieve the distri-
butional goal. On the contrary, the highest income stratum even has a larger left tail,
meaning the lower end of the highest income stratum is even more elastic compared to
other strata. To further explain the reduced-form evidence from Figure 2, I separate the
data into wet and dry months based on the median precipitation value.

Figure 5. : Price Elasticity Boxplots by Income Strata - Wet vs. Dry Months

There is a clear trend in the dry months where the median price elasticity is lower for
higher income strata (larger in magnitude)16, meaning households with higher income
are more responsive to price changes under low precipitation, while lower income strata
do not share this difference. This counterintuitive result is likely due to the interaction
between price effect and precipitation: when it rains a lot, few households across income
levels have excess outdoor water consumption that responds to price, but when it is dry,
households with the preferences of greener lawns and larger pool usage are more re-
sponsive to price change, and these households tend to have higher income. In addition,
higher-income households are more likely to be equipped with better technology to pre-
cisely control their water usage 17, which will also contribute to higher price elasticities.
From Figure A5, we can see that 14.4% of the highest income stratum households are
more elastic (lower than the overall median), and consume on average more than 20k
gallons.

This observation of high elasticities for higher-income households under dry weather,
combined with the omnipresence of high quantity consumers across all income strata (see
Figure 1), adds extra challenges to the optimal price design, especially in dry months.
Under the inverse elasticity rule, the price should decrease for these households. How-

16This fits the reduced-form evidence from Figure 2.
17Like smart meter, smart sprinkler, etc.
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ever, a price decrease would result in an overblown increase in the consumption of the
high-income, more elastic, and high quantity consumers, which poses a serious issue in
reaching the conservation goal of the utility. In addition, a price decrease for high-income
households will certainly create complexities in reaching the distributional goal of the
optimal price. More discussions regarding the price elasticity heterogeneities among
income strata can be found in Section A.A2.

D. How weather shifts the Demand Curve?

From the structural demand model, I have estimated the heterogeneity of price elastic-
ities across income strata and weather conditions, and observed that under dry weather,
the higher income households would become more elastic, which creates complexities
under Ramsey’s inverse elasticity rule. This also showcases the importance of precipi-
tation in the discussion of water utility pricing. In this subsection, I will introduce four
alternative weather conditions and observe the changes in quantity and payments under
the status quo pricing scheme to understand how weather shifts the demand curve. The
four weather conditions are: 1) dry weather, where the precipitation decreases by 0.25
inches for every month compared to the status quo weather, 2) rainy weather, where
the precipitation increases by 0.25 inches for every month compared to the status quo
weather, 3) low variance, where the new precipitation standard deviation is 0.75× the
status quo standard deviation, and 4) high variance, where the new precipitation standard
deviation is 1.25× the status quo standard deviation. I only changed precipitation and
kept all other weather variables unchanged. In addition, all other house characteristics
remain the same as their status quo counterparts. I will then compare the new quantities
and payments through the alternative weather and compare them to the status quo. I will
present the overall distribution of the data through empirical cdf and then focus the data
to the lowest income stratum (0 ∼ 6k) and the highest income stratum (> 100 k).

When the weather becomes drier, less precipitation will shift the demand curve right-
ward, causing quantity and payments to increase. Conversely, when the weather becomes
more rainy, more precipitation will shift the demand curve leftward, causing quantity and
payments to decrease.18This means that in order to achieve a better conservation goal for
the utilities, the status quo price is too low, at least in the higher tier, to better curb the
excessive demand under dry weather conditions, while the financial feasibility concern
is minimized. On the other hand, under rainy weather, the conservation goal is easy to
achieve, while financial feasibility concerns are more pressing.

When the weather decreases in variance, the demand distribution will have smaller
spread as well, meaning consumptions left of the median will increase, and right of
the median will decrease. However, since both the precipitation, and quantity are very
right-skewed, causing the decrease of the consumptions larger than mean more domi-
nant. Therefore, the empirical cdf largely resembles the pattern of more rainy weather,
where the financial feasibility concerns are more pressing. Conversely, when the weather
increases in variance, the demand distribution will have larger spread, causing the con-

18The “bumps” in either empirical cdfs, are due to the consumer bunching around the kink points.
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Figure 6. : Changes in Quantity and Payments Distributions between Weather Conditions
- Dry and Rainy

Figure 7. : Changes in Quantity and Payments Distributions between Weather Conditions
- Low and High Variance
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sumption right of the median to increase. These shifts on the demand curve are more
dominant due to the same reason, making the empirical cdf largely resembles the pattern
of drier weather, where the conservation goal is harder to meet.

Figure 8. : Changes in Quantity Distributions between Lowest and Highest Income Strata
- Dry and Rainy

When specifically comparing the demand distribution between income strata, I observe
the difference between the empirical cdf from new weather pattern and the empirical
cdf of the status quo weather, and the highest income stratum has larger differences,
for both dry and rain weather conditions. This showcases the “weather elasticity” is
larger in magnitude for the higher income households, which aligns with the evidence
I saw from Figure 2. Low and high variance weather conditions show similar patterns.
The low elasticities of the low income households will be quite concerning regarding
the distributional effect, especially when the demand curve shift rightwards. When the
demand curve shifts rightwards, the conservation goal will require the price to increase at
least at higher tiers. Balancing both goals with a single price will be challenging for the
utilities and will certainly create a shadow cost, which will inevitably decrease welfare.
Based on the counter-intuitive price elasticity results in Figure 4 and the existence of high
quantity households in lower income strata in Figure A5, it is reasonable to question if
the price itself can achieve both policy goals, as well as improve the distributional effect.
In the next section, I will formally define the empirical optimal price model and further
implications and caveats of the challenge created by price elasticities interacted with
weather across different income strata can be found in Section A.A2.

IV. Ramsey Pricing Model

In this section, I establish the theoretical basis for the Ramsey pricing problem (from
Ramsey (1927)) faced by a natural monopoly water utility company with the policy con-
straints it is facing. Finally, I introduce the empirical model used to estimate the optimal
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Ramsey pricing under different extremes of weather conditions.
As previously established, Ramsey proposed the “second-best” solution to address a

company’s financial requirements while minimizing the reduction in overall social wel-
fare, employing the inverse elasticity rule. Water utility companies, particularly in urban
metropolitan areas with high fixed costs, often adopt the Ramsey format of IBP within
a multi-part tariff structure to meet financial requirements and policy goals of conser-
vation and equity. For simplicity, when discussing the theoretical basis for the Ramsey
problem, I treat the entire pricing structure as a single price p, as opposed to the pricing
vector of IBP in a multi-part tariff. In the empirical model, I reintroduce the multi-part
IBP to derive more realistic solutions.

The theoretical Ramsey model, introduced by Ramsey (1927), is extended to include
additional policy constraints in the generalized Ramsey model, as discussed in literature
such as Coady and Drèze (2002). For the empirical model, I largely follow the setup of
the conservation constraint for the Ramsey problem as presented in Wolak (2016). To
empirically measure consumer welfare, I adopt the framework and definition of equiva-
lence variation for nonlinear budget constraints from Hausman (1981), Reiss and White
(2005), and Ruijs (2009).

A. Ramsey Pricing Model with Conservation Constraint

In this subsection, I briefly showcase the changes from the classic Ramsey model by
using a simplified pricing model with the price p, chose by the water utulity to maximize
consumer welfare, subject to two constraints: 1) annual revenue (R(p)) is greater than or
equal to an exogenous total annual cost (C) that is independent of demand (simplifying
for large fixed costs),19 and 2) total annual quantity (q(p)) is less than or equal to an
exogenous annual quantity upper bound (Q̄).

max
p

CS(p)

s.t. R(p)−C ≥ 0
and q(p)≤ Q̄

(10)

Solving this Lagrangian yields the following result:

p−C
p︸ ︷︷ ︸

Markup

=
λ −1

λ

1
ε︸ ︷︷ ︸

Ramsey Rule

+
µ

λ p︸︷︷︸
Conservation Penalty

p∗ =
C+µ/λ

1− λ−1
λ

1
ε

(11)

The classic Ramsey rule states that the markup is proportional to the inverse of price
elasticity (ε), but the optimal markup here includes an additional term that serves as a

19In reality, the total cost of maintaining urban water is not related to demand fluctuation; regardless of the amount of
water consumed, maintenance and transportation fees do not change, making this a reasonable assumption.
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penalty for the conservation constraint. The optimal price depends on λ (the Lagrangian
multiplier for the revenue constraint), µ (the Lagrangian multiplier for the conservation
constraint), the exogenous cost C, and the price elasticity ε . If µ increases, the shadow
price of the conservation constraint increases, and the utility has a greater incentive to
raise the markup. If µ = 0, the conservation constraint is not binding, and the standard
Ramsey rule is recovered. If C increases, the price will need to increase. If ε increases,
demand becomes more elastic, and the price will need to decrease, which is consistent
with the standard Ramsey rule. If I denote k = λ−1

λ
, the price can be expressed as p =

C+µ(1−k)
1− k

ε

= C+µ

1− k
ε

− 1
k− 1

ε

. If λ increases, k (which is less than 1) will also increase. The

first term increases. The second term, being minus a negative number since k− 1
ε
< 0,

also increases. This means that when λ increases, the price will increase.

B. Empirical Model

In this subsection, I develop the empirical model used to estimate the optimal price
derived from Equation 10. The empirical model’s goal is to extend the Ramsey model
into a more realistic setting. 20 To keep consistency with the demand model, the optimal
price (p) consists of three vectors: marginal prices ({pk}5

k=1), kink points ({qk}4
k=1),

and fixed payments ({Ak}5
k=1). To maintain Austin Water’s current pricing structure

of 5 tiers with 4 kink points, p has a total of 14 parameters, and I assume the pricing
structure does not change21. The optimal price, which depends on weather Z, maximizes
the annual total equivalence variation (EV ) weighted by household income I to boost
the distributional effect.22 To account for weather-level stochasticity, ideally, I would
need to utilize the real distributions of weather to derive EZ . However, it is challenging
to estimate this real distribution of weather consistently by using either data from very
recent years (which lack sufficient data points for empirical distribution derivation) or
long-term data (which are affected by climate change trends). Instead, I assume the
utility faces an expectation based on its prior23, and then calculates the optimal price
based on its weather expectation. Later, I will perform a robustness check by adding a
Monte-Carlo disturbance to simulate weather prediction error and generate a distribution
of Z. Further details on simulating the distribution of Z can be found in Section A.A3.
Aside from stochasticity from Z, the demand estimation using MLE (Equation 8) also
introduces household-month-level demand stochasticity from εh, as the econometrician
observes neither ηh nor νh. I use Monte-Carlo simulations for both to generate their

20The model is partially based on Wolak (2016).
21This includes the assumption that each marginal price and fixed payment will be non-decreasing in tiers.
22As pointed out by Feldstein (1972), for public pricing to account for distributional equity, the price setting should set

the welfare weight according to the social marginal utility of income. In addition, a logarithmic social utility of inequality
and ε = 1 for the Atkinson Index (Atkinson (1970)) result in a weighting proportional to 1/I.

23In reality, utilities would form a general trend of next year’s weather based on phases of the El Niño-Southern
Oscillation (ENSO). For example, next year’s weather will be drier in general, causing precipitation to be lower in the
mean.
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distributions.24

p∗(Z) = argmax
(p,q,A)

∑
h

[
wh ·EVh(Z;p,p0, I)

]
−λ ·max(0,C−Rh(Z;p))

]

s.t. P
(

∑
h

qh(Zh;p)≤ Q̄)

)
≥ 0.95

(12)

Note that for the two exogenous thresholds: C = ∑R(Z0;p0) and Q̄ = ∑q(Z0;p0). Both
Z0 and p0 represent the status quo weather and price. This means I compare the counter-
factual revenue and quantity to their status quo counterparts. In particular, due to the lack
of detailed information on costs, I use the status quo revenue as the benchmark to eval-
uate financial viability. Utilities usually ensure their revenue is just enough to cover the
annual cost to avoid excessive welfare distortion, which makes this a valid assumption.
I further discuss the validity of this assumption in this case in Section A.A3. For the
conservation constraint, I introduce chance-constrained programming to provide more
flexibility in price setting. It essentially requires that the probability of the counterfac-
tual annual total quantity for all households being smaller than the status quo annual total
quantity is greater than 0.95. The structures of both constraints are adopted from Wolak
(2016). Unlike the typical Ramsey pricing setting, I set up the revenue constraint as a
revenue loss term −λ ·max(0, loss), such that when the revenue requirement is not met,
it incurs a cost to the entire economy, but does not necessarily award any positive value
when the requirement is met. The goal is to capture the utilities’ surcharge mechanisms
or debt-service coverage rules that make large revenue losses more costly. The parameter
λ controls the weight between the monetary value of welfare, measured by the weighted
equivalent variation, and the loss of revenue for the utilities. Mathematically, it is similar
to the Ramsey model, but empirically, this provides more flexibility as, instead of a hard
constraint, the utilities are allowed to have some annual losses.

The weight in front of the welfare, wh = Imedian/Ih is to boost the distributional effect
from the pricing optimization procedure. I took the inverse of the household income
and centered the median to be 1, such that the welfare part and the revenue part are
comparable. The weight is an assumption on the policy of the utility, as they will actively
try to boost the distributional effect from the pricing. By making it such that higher than
median income will receive smaller weights (wh < 1) and lower than median income will
receive larger weights (wh > 1), the aggregated welfare will, through the optimization
process, actively look for a price that can boost distributional effects.25

The weight of the revenue loss λ is calculated by selecting a grid of λ = [0.25,0.5,0.75,
1,1.5,2,5,10], and solving for the optimal price under status quo weather. I find that
when λ = 0.5, it generates the result closest to the status quo prices. No further fine-

24I will generate ηh on the household level to avoid overfitting.
25The idea of using income inverse as the base for social welfare calculation was first developed by Atkinson (1970).

When ε = 1, the Atkinson index is 1/I. The normalization of the weights such that a household with the median income
receives a weight of 1 is a standard approach in applied cost-benefit analysis (e.g., Office of Management and Budget,
2023).
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grained grid search has been implemented, as I largely need to know the policy prefer-
ence of the utility. λ = 0.5 means they weight the consumer welfare twice as important
compared to revenue losses, which is reasonable for a social planner.

The welfare itself is defined as the equivalence variation (EVh(Z;p,p0, I)). It is cal-
culated by obtaining the expenditure function from the indirect utility function and then
calculating the welfare effects from the price change. The framework is developed by
Hausman (1981) and Reiss and White (2005), and the formal definition is from Ruijs
(2009).

Based on the indirect utility function V (p, I + dk) from Equation 3, the expenditure
function e(p,u) for a household choosing tier k is:

(13) e(pk,u) =

[
(1−ρ)

(
u+ exp(β ′

1X +β
′
2Z + c+ ε)

p1−α

k
1−α

)] 1
1−ρ

If a household’s counterfactual demand falls within tier k, rather than at a kink point
qk, its equivalent variation is:

(14) EV (p0, p, I) = e(p,V ′(p))−d0
k − I

where V ′(p) is the new counterfactual utility generated by the new price p, and d0
k is

the virtual income correction term from the original price scheme, i.e., dk = −Ak −
∑

k−1
j=1(p j − p j+1)q j. The equivalent variations are adjusted for the amount of subsidies

received due to the nonlinearities in the budget set. Note that the expenditure func-
tion (e(pk,u)) is used to solve for the virtual income from the indirect utility function,
instead of I, hence there is no correction term dk here. If the price does not change,
EV (p0, p0, I) = 0 and e(V0, p0) = I +d0

k .
On the other hand, when the predicted consumption is at a kink point qk, the above

definition does not apply as these consumers are not technically facing the new marginal
price from their chosen tier.26 The equivalent variation is generated from p̄, where p̄ is
the price at which the demand function (from Equation 6) generates the result qk. If I
denote A = β1X + β2Z + c+ ε , and V̄ I denotes the corresponding virtual income, the
idea is to solve for (p̄,V̄ I) as a substitution effect where (p̄,V̄ I) generates the same utility.

This means:

{
V (pk, I +d0

k ) =V (p̄,V̄ I)
log(qk) =A−α log(p̄)+ρ log(V̄ I)

. I can solve for p̄:

log(qk) =A−α log(p̄)+
ρ

1−ρ
log[exp(A)

1−ρ

1−α
(p̄1−α − p1−α

k )+(I +d0
k )

1−ρ ]

For this demand function and indirect utility function, I need to solve this nonlinear
function numerically to obtain p̄. Then, the equivalent variation for predicted demand at

26To see more details of the additional case, see Section A.A2.
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the kink point qk is:

(15) EV (p0, p, I) = e(p̄,V ′(p))− (p̄− p0)q0
k −d0

k − I

V. Counterfactual Analysis

In this section, I analyze the welfare effects of counterfactual optimal prices under
various precipitation patterns, focusing on the differences in these effects across income
strata. I quantify the associated welfare by comparing the new and status quo values
for revenue (R%), quantity (Q%), and the equivalent variation to income ratio (EV/I).
These measures capture the changes from both the price structure (including its policy
constraints) and the weather itself. The results indicate that the lowest-income stratum is
the most susceptible to welfare decreases from both exogenous weather shocks and the
policy constraints within the price optimization process. I then disentangle the welfare
change from these two sources to calculate the shadow cost of the policy constraints on
the lowest-income stratum. Lastly, I propose zeroscaping/xeriscaping as a policy solution
to specifically improve the distributional outcome.

To generate the counterfactual weather scenarios, I begin with the status quo pre-
cipitation (Z0) and create two types of patterns: 1) Mean Shift: Z′ = Z0 ± ζ1, where
ζ1 ∈ [−0.25,0.25]. The generated Z′ has the same variance as Z0 but a different mean.
2) Variance Shift: Sd(Z′) = Sd(Z0) · ζ2, where ζ2 ∈ [0.75,1.25]. The generated Z′ has
the same median as Z0 but a different variance. The latter is achieved by nonparametri-
cally scaling the standard deviation from Z0 while maintaining the median and clipping
the result at 0.27 I focus solely on changes in precipitation, assuming all other weather
variables remain at their status quo levels. Throughout the analysis, I also hold house-
hold characteristics and income constant, with the exception of NDVI, which is updated
through a reduced-form analysis as discussed in Section A.A4.28 Using these counter-
factuals, I employ the empirical model from Equation 12 to calculate the optimal price.
Further details on the optimization procedure can be found in Section A.A4.

A. Welfare Results - Mean Shift (ζ1)

This subsection presents the results of shifting the mean of precipitation by adding ζ1 ∈
[−0.25,0.25] to the status quo weather, showcasing the heterogeneous welfare effects
across income strata, particularly when demand shifts rightward. Under this scenario,
the utility expects the average precipitation to change by ζ1 while the variance remains
constant. The resulting menu of optimal prices can be found in Section A.A4.

Figure 9 shows the general welfare results for precipitation expected to be drier (ζ1 ≤
0) and rainier (ζ1 ≥ 0). When ζ1 ≤ 0, demand shifts rightward, the quantity constraint
becomes binding, and the revenue constraint becomes slack. Even with price increases

27Although precipitation often follows a right-skewed log-normal distribution, a parametric assumption makes scaling
by the factor ζ2 imprecise. As noted by meteorologists Heredia et al. (2018), a nonparametric approach is more realistic
for generating synthetic high-variance data.

28I also assume the income effect in the demand function (Equation 6) does not change with weather.
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Figure 9. : Welfare from the Optimal Price in Shifting Mean (ζ1 ∈ [−0.25,0.25])

only for higher tiers (see Figure A7) and weighting the objective by EV/I, lower-income
households exhibit a larger welfare loss compared to strata above $20k, which show
minimal loss. Conversely, when ζ1 ≥ 0 (i.e., when the weather is rainier), demand shifts
leftward, the revenue loss is more pressing, but due to the implementation of the loss
function and lower weight (λ = 0.5), I still observe revenue losses. This results in a
welfare increase for lower-income households.

One of the caveats from this analysis is that I don’t directly observe the household-level
income. Instead, the income is extrapolated through the house value and normalized by
zip code, assuming the distributions of house value and income within each zip code are
the same. To test the validity of this assumption, I limited the welfare result to 1) the
top 50th percentile of house built year (built after 1982) and 2) houses built after 2000
(∼ 27% of the total households), and the result could be found in Section A.A4. To
summarize, in both specifications, the lowest stratum still generates much lower welfare
compared to other strata, and both results are at a similar level to the result from the full
sample. This showcases that house value from the appraisal district is a good enough
proxy for the household income.

B. Welfare Results - Variance Shift (ζ2)

This subsection presents the results of shifting precipitation variance (ζ2), demonstrat-
ing how changes in variance also shift the demand curve. Based on the result from Sec-
tion III.D, lower variance (ζ2 < 1) will shift the demand curve to the left, while higher
variance (ζ2 > 1) will shift the demand curve to the right. Under this scenario, the utility
expects the variance of precipitation to change by a factor of ζ2 while the median remains
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constant.

Figure 10. : Welfare from the Optimal Price in Shifting Variance (ζ2 ∈ [0.75,1.25])

Figure 10 showcases the general welfare results for ζ2 ≤ 1 and ζ2 ≥ 1. When ζ2 ≤ 1
(variance decreases), demand shifts leftward, the revenue loss is more concerning, and
the conservation constraint is slack, but again, due to the implementation of the loss func-
tion and λ = 0.5, I still observe revenue to be lower than the status quo when precipitation
variance is very low. This occurs because, as variance decreases, the right-skewed precip-
itation distribution results in more rain during historically drier months. Consequently,
welfare generally increases, particularly for the lowest-income stratum (0 ∼ $6k). Con-
versely, when ζ2 > 1 (variance increases), demand shifts rightward, the quantity con-
straint binds, and the revenue constraint is slack. The resulting different weather pat-
terns decrease welfare for all strata, disproportionately affecting lower-income house-
holds (similar to the ζ1 ≤ 0 case). The interplay of equity welfare weight (wh), both
constraints and weather, creates an interesting pattern for quantity. When precipitation
variance is low, to reduce revenue loss, the utility will “prefer” more quantities (ceil-
ing by the upper bound) to be consumed by higher income households. However, when
precipitation variance is high, the pressure to maintain the conservation goal is largely
achieved by the decreasing quantity for the higher-income households. As the equity
weight is larger for the low-income households, they don’t have the same “burden” as
the high-income households to maintain the distributional goal.

Combining these results, a clear pattern emerges: the distributional effect of IBP is
not improved, and is often worsened when weather shifts demand rightward, even with
income-weighting in the objective function. Several factors explain this outcome: 1) Wa-
ter bills naturally represent a higher proportion of income for lower-income households,
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so any price or weather change incurs a larger relative welfare shift (EV/I).29 2) The
inverse elasticity rule suggests decreasing prices for high-elasticity consumers, which is
distributionally counterproductive, as many high-elasticity households are in the high-
est income stratum and consume large quantities.30 3) The most important reason is
that a non-negligible number of lower-income households are high-quantity consumers
with relatively low elasticities, often placing them in higher price tiers than their in-
come suggests.31 As I explained above, the optimization process has tried its best to
shift the burden of the conservation goal towards higher-income households, and we see
a large decrease in quantity when demand shifts to the right. However, the process is
only achieved through targeting quantity, instead of targeting income. The existence
of high-quantity-low-income households will inevitably suffer from higher prices from
the conservation constraint, which leads to lower welfare. Even though they are not the
majority of the lowest income stratum, they still drag the results down.

All these reasons compromise the premise that income is a good indicator of quantity,
and higher marginal prices in higher tiers promote equity. These effects work against the
assumption of using income as a proxy for consumption in rate design, making IBP an
unreliable tool for achieving distributional goals. This finding aligns with previous lit-
erature concluding that IBP changes often favor higher-income households (Ruijs, Zim-
mermann and van den Berg (2008), Echeverri (2023), Wichman (2024)).32

C. Shadow Cost of the Policy Constraints

The counterfactual analysis proves that, when weather shifts the demand curve right, it
is difficult to improve or even maintain distributional equity while simultaneously achiev-
ing conservation goals. For the lowest-income stratum, this welfare imbalance stems
from both the policy constraint and the extreme weather itself. While the weather is
fully exogenous and the utility cannot control its welfare impact, policy constraints, on
the other hand, can be mitigated by the utility. To isolate the welfare loss that can be
mitigated by the utility, I first calculate the welfare impact of extreme weather alone by
applying the status quo price (p0) to all counterfactual weather scenarios. The difference
between that result and the welfare under the optimal price represents the welfare effect
of the optimal pricing with their policy constraints. I perform this exercise specifically
for the lowest-income stratum. The results for all scenarios can be found in Section
A.A4.

For the mean-shift scenarios (ζ1), when ζ1 < 0, the binding conservation constraint
generates a shadow cost that reduces welfare. In the driest condition (ζ1 = −0.25),
welfare under the status quo price is −2.41% on average. Compared to the optimal
price result (−4.49%) from Figure 9, this implies the shadow cost of the conservation
constraint incurs an average welfare loss of $74.2 per household per month for the lowest

29Similar patterns have been pointed out by Ruijs, Zimmermann and van den Berg (2008) using data in Sao Paolo,
Brazil.

30See Figures 4 and A5.
31See Figure A5.
32Both Ruijs, Zimmermann and van den Berg (2008) and Wichman (2024) have pointed out that IBP itself does not

effectively target the lower stratum and that more active progressive measures are needed.
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stratum. When ζ1 > 0, even though the revenue loss function is constructed as a policy
constraint, the less strictness of following this constraint in reality made the optimal
pricing and its distributional effect work as intended, creating a welfare increase from
2.18% to 3.52%, which is $45.3 per household per month for the lowest stratum.

For the variance-shift scenarios (ζ2), the effects are similar. In the lowest variance
condition (ζ2 = 0.75), welfare under the status quo price is 2.45%. Compared to the op-
timal price result (3.88%) from Figure 10, this implies that a less strict revenue constraint
enables the optimal pricing to create a welfare gain of $48.5 per household per month
for the lowest stratum. In the highest variance condition (ζ2 = 1.25), welfare under the
status quo price is −2.48%. Compared to the optimal price result (−4.60%) from Figure
10, this implies a shadow cost from the conservation constraint of $74.9 per household
per month.

Both shifting mean and shifting variance showcase that the effectiveness of the optimal
pricing procedure with accounting for welfare equity can be hindered by the strictness
of the policy constraints. I modeled the policy behaviors of the utility using data and its
goals. With the dwindling water supply, more metropolitan areas in the southwest regions
of the US will be like Austin Water, adopting more and more strict conservation policies.
Revenue, on the other hand, could be savaged by the city government as typically, the
utility company is a public company. If the utility cares more about its revenue feasibility,
i.e., λ is higher, a more strict revenue constraint could also impose a welfare burden for
the lower-income households. In addition, I also check the robustness of the result with
different segments of built years to ensure the estimated income from house appraisal
value won’t bias the result.

D. Zeroscaping for the Lowest Income Stratum

The preceding analysis concludes that under extreme weather, policy constraints on
optimal prices cause greater welfare losses for the lowest-income stratum. Since these
constraints are essential for utility operations, mitigating this welfare imbalance requires
an additional policy targeted at this group. IBP’s failure to achieve the distributional goal
is largely due to the mismatch between income level and consumption level. To fully
understand what variables could predict the consumption heterogeneity, I performed a
reduced-form analysis (see Table A7), which shows that factors like house size, number
of bathrooms, and vegetation health (NDVI) are significant predictors of high usage. Of
these, NDVI becomes most pronounced during periods of low precipitation. Therefore,
a natural policy to test is zeroscaping—reducing NDVI.

For the counterfactual, I halve the status quo NDVI for the lowest-income stratum,
simulating the removal of roughly half their lawns,33 and repeat the optimal pricing ex-
ercise. Since NDVI only changes for the lowest stratum, I present only their welfare
changes.

Unsurprisingly, by halving NDVI, the lowest stratum consumes and pays less, result-
ing in an increase in welfare across all weather conditions, particularly when ζ1 < 0 and

33Note that I only modified NDVI > 0; if the status quo NDVI was already negative, I did not change it.
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Figure 11. : Welfare Comparison of Halving NDVI (ζ1 ∈ [−0.25,0.25])

the demand curve shifts rightward. In the most extreme dry condition (ζ1 =−0.25), ze-
roscaping improves EV/I for the lowest stratum from −4.49% to −0.62%, correspond-
ing to a gain of roughly $121.58 per household per month. This measures the immediate
welfare effect, not including long-term benefits.34

Figure 12. : Welfare Comparison of Halving NDVI (ζ2 ∈ [0.75,1.25])

34A one-time investment in zeroscaping would provide a near-permanent downward shift in the demand curve, in-
creasing future welfare.
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The pattern is similar for variance shifts. When demand shifts rightward (ζ2 > 1),
xeriscaping improves welfare for the lowest stratum. In the extreme case of ζ2 = 1.25, it
improves EV/I from −4.60% to −1.26%, corresponding to roughly $116.46 per house-
hold per month.

To further investigate the value of this policy, I implemented multiple NDVI reduction
levels, from 0 to 0.9 (representing a 90% lawn reduction). Figure 13 shows the welfare
change for the two most extreme rightward-shift scenarios.

Figure 13. : Welfare Result under Extreme Weather Conditions by NDVI reduction level
∈ [0,0.9]

The graph shows a clear increasing trend in welfare as the NDVI reduction level in-
creases. For ζ1 = −0.25, a 0.3 reduction in NDVI generates $75 per household per
month, almost nullifying the welfare loss from the conservation constraint’s shadow cost.
A 0.6 reduction nullifies the welfare losses from both the shadow cost and the extreme
weather itself. For ζ2 = 1.25, welfare is generally lower, meaning higher NDVI reduc-
tions are needed to achieve the same welfare level. On average, across all reduction
levels, the ζ2 = 1.25 scenario generates $6.06 less welfare per household per month,
showcasing that higher variance represents a more severe extreme weather condition.
Even so, zeroscaping remains a viable policy solution to improve the distributional ef-
fect.

VI. Conclusion

In this paper, I estimate the optimal Inclining Block Price (IBP) tariffs for water utili-
ties using a Ramsey-style pricing model that incorporates extreme precipitation patterns.
My initial reduced-form analysis reveals that deviations in precipitation are correlated
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with greater volatility in water consumption for higher-income households. This evi-
dence highlights a significant price-setting challenge for utilities, particularly concerning
their distributional goals.

I then employ a structural Discrete-Continuous Choice (DCC) model, applied to the
piecewise-linear budget constraint, which incorporates a satellite-derived vegetation health
index (NDVI) for household lawns. This allows for a more granular understanding of
outdoor water usage in single-family households—a substantial portion of consumption
that is most sensitive to precipitation.

Subsequently, I develop an empirical Ramsey model that includes both revenue recov-
ery and quantity conservation constraints to determine the optimal IBP structure. Given
that prices are set well before weather events occur, I explore optimal pricing under
various weather scenarios, including shifts in the mean and variance of precipitation
from the status quo. The analysis shows that when precipitation averages decrease or
when volatility increases, the demand curve shifts rightward. This places more pressure
on the now-binding conservation constraint, compounding the welfare loss caused by
the extreme weather itself. Notably, the lowest-income stratum experiences the high-
est welfare losses. My findings confirm existing literature that current IBP tariffs used
by utilities generally favor high-income households due to mismatches between house-
hold income and consumption levels. Furthermore, high-income households demonstrate
greater price sensitivity during periods of low precipitation, further undermining the in-
tended distributional effects of IBP.

This paper provides empirical measurements of the shadow cost of policy constraints
in the utility’s optimal rate design by comparing welfare outcomes with and without the
conservation and revenue requirements. I separate the welfare loss imposed by the util-
ity through its policies and the welfare loss from the weather, which is not controlled
by the utility. I find that the lowest-income stratum experiences the largest welfare loss
from these shadow costs, particularly when weather shifts the demand curve rightward.
During these weather conditions, such as extreme drought or high precipitation variance,
the conservation constraint becomes binding. This imposes an average welfare loss of
$74.2 and $74.9 per household per month, respectively, on the lowest-income stratum.
Notably, the shadow costs of these constraints do not cause significant welfare differ-
ences for other income strata. This finding underscores that price alone is an insufficient
instrument for achieving a utility’s multifaceted policy goals, as necessary conservation
goal weaken the intended distributional effect.

This result has a profound policy implication: when weather cause a rising demand,
using price as the sole instrument to achieve a utility’s policy goals is not feasible. Ad-
ditional policies are necessary to achieve distributional objectives. I focus on zeroscap-
ing/xeriscaping (i.e., reducing lawn water needs and thus NDVI) as a straightforward
policy to curb demand when the demand curve is pushed rightward. Under extremely
dry conditions, reducing NDVI by 0.3 could generate $75 in welfare per household per
month, almost nullifying the welfare loss from the shadow cost of the conservation con-
straint. While high precipitation variance causes a larger welfare reduction overall, mak-
ing the effect of zeroscaping slightly smaller, it remains highly effective.



WATER UTILITY PRICING AND DIFFERENT WEATHER PATTERNS 33

Looking ahead, I plan to expand this research in two directions. First, I will model
consumption smoothing programs. The existence of “Budget Billing” and similar pro-
grams reflects consumer risk aversion and a preference for stable monthly payments,
particularly among lower-income individuals. This preference acts as a form of insur-
ance against weather stochasticity and interacts significantly with the utility’s pricing op-
timization problem. Second, I will endogenize vegetation changes (NDVI). I currently
treat lagged NDVI and any reduction from zeroscaping as exogenous variables. How-
ever, consumers make long-term decisions about landscaping based on potential welfare
gains. Endogenizing this decision-making process would allow for a more precise esti-
mation of the long-term welfare benefits of xeriscaping.
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APPENDIX

All plots of this paper have utilized the software “Colorgorical” to choose a more clear
and aesthetically pleasing color scheme. Gramazio, Laidlaw and Schloss (2017). All
codes producing the results and graphs related to this project are posted here.

A1. Water Utility Pricing in Austin, TX

PRECIPITATION TREND IN AUSTIN

Figure A1. : Precipitation Trends of 2008-2009 vs. 2018-2019

CURRENT PRICING STRUCTURE

Table A1—: Pricing Structure

Kink Points (kGallon) Fixed Charge ($) Marginal Price ($)
Non-CAP CAP

0-2 8.5 3.09 2.42
2-6 10.8 5.01 4.1
6-11 16.5 8.54 6.72
11-20 37 12.9 11.56
>20 37 14.41 14.26

Note: Each fixed charge is composed of fixed payment and meter charge. The fixed payment depends on final
consumption quantity, and the meter charge assumes a 5/8 meter size, which is the most common residential meter size.
The marginal price includes volume charge, reserved fund charge and community benefit charge. These itemized
charges are all billed per 1,000 gallons, meaning they are essentially part of the marginal price. Volume charge depends
on the amount of final consumption quantity while the other two are billed per 1,000 gallons. Reserved fund surcharge
goes into a restricted reserve fund to offset water service revenue shortfalls that may impact operations and services.
Community benefit charge is only billed to Non-CAP consumers to fund the CAP.

https://github.com/gordonjgz/water_utility_pricing
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TIER AND INCOME DISTRIBUTION

Based on the status quo price and status quo quantity distribution, I divide the house-
hold’s monthly income into 5 different strata. Since both the quantity and income are
very right-skewed, only for this plot, I filtered out all households with monthly house-
hold income bigger than $250,000, and quantities higher than 100,000 gallons. These
households are not filtered out in demand estimation and counterfactual analysis, but are
simply filtered out for the picture below for visualization purposes.

Figure A2. : Monthly Water Quantity Distribution vs. Income Distribution

Table A2—: Monthly Water Quantity Distribution vs. Income Distribution

Income Strata ($) Percentage Tiers (kGal) Percentage
0 ∼ 6k 0.146 0 ∼ 2k 0.159
6k ∼ 20k 0.489 2k ∼ 6k 0.503
20k ∼ 45k 0.216 6k ∼ 11k 0.200
45k ∼ 100k 0.104 11k ∼ 20k 0.0927
> 100k 0.0441 > 20k 0.0456

Note: Just like the utility targeting different quantity levels of households. This division of household monthly income
into different strata is without loss of generality and serves as a way to gauge the distributional effect incurred by any
price change.

DESCRIPTIVE AND REDUCED FORM EVIDENCE

In the interest of seeing how different income strata will react to abnormal weather
changes and the descriptive evidence of Figure 2, I performed the following OLS:

∆q = β0 +β1∆ZT +β2∆ZP +β3Income∗∆ZT +β4Income∗∆ZP +α p+ ε
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where Income is the income strata defined in Table A2. ∆Z for both precipitation and
temperature is the difference between observed Zm for month m and the corresponding
30 year average. ∆q = qm−q̄m

q̄m
, which is the quantity deviation from the average quantity

for the specific household for a specific month between 2016-2020 in percentage terms.

Table A3—: Regression Results for Quantity Deviation

Variable Estimate Std. Error t value Pr(> |t|)
(Intercept) −0.4182 0.0008490 −492.609 < 2e-16 ***
∆ZP −0.01668 0.0003582 −46.555 < 2e-16 ***
∆ZT 0.004787 0.0001438 33.283 < 2e-16 ***
income strata: 6k∼20k −0.02104 0.0007867 −26.739 < 2e-16 ***
income strata: 20k∼45k −0.08237 0.0008990 −91.627 < 2e-16 ***
income strata: 45k∼100k −0.1673 0.001096 −152.710 < 2e-16 ***
income strata: >100k −0.2476 0.001513 −163.593 < 2e-16 ***
p 0.07486 0.00008868 844.089 < 2e-16 ***
∆ZP×income strata: 6k∼20k 0.001576 0.0004098 3.846 0.00012 ***
∆ZP×income strata: 20k∼45k −0.009682 0.0004614 −20.986 < 2e-16 ***
∆ZP×income strata: 45k∼100k −0.01923 0.0005504 −34.933 < 2e-16 ***
∆ZP×income strata: >100k −0.01874 0.0007744 −24.198 < 2e-16 ***
∆ZT×income strata: 6k∼20k 0.00009410 0.0001657 0.568 0.57012
∆ZT×income strata: 20k∼45k 0.0004584 0.0001880 2.439 0.01474 *
∆ZT×income strata: 45k∼100k −0.002830 0.0002234 −12.667 < 2e-16 ***
∆ZT×income strata: >100k −0.002834 0.0003005 −9.428 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.4014 on 2351610 degrees of freedom
Multiple R-squared: 0.263, Adjusted R-squared: 0.263
F-statistic: 5.596e+04 on 15 and 2351610 DF, p-value: < 2.2e-16

In this model, controlling for differences in precipitation, maximum temperature, and
the marginal price, the relationship between income strata and the percentage difference
in water consumption is seen through: 1) for baseline differences (when ∆ weather and
price are zero), compared to the lowest income strata (0-6k), most higher income strata
show a statistically significant lower baseline percentage difference in water consump-
tion from their usual amount. This does not mean higher income groups use less water
overall; it means their deviation from their own usual quantity, under these specific base-
line conditions, is lower than the deviation for the reference group. This effect is likely
influenced by the strong role of price in this model, as marginal price might be corre-
lated with income or consumption levels that influence which price tier is reached. 2)
The linear effect of precipitation difference: the interaction terms between income strata
and ∆ZP are largely significant. This means that the linear rate at which ∆q changes for
every unit increase in precipitation difference varies significantly across income strata.
In particular, higher income strata (20k-45k, 45k-100k, >100k) show increasingly more
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negative interaction terms (-0.009682, -0.01923, -0.01874). This means the negative im-
pact of the additional precipitation difference on consumption deviation is increasingly
stronger as income rises in these groups. 3) the linear effect of temperature difference:
many interaction terms between income strata and ∆ZT are also significant, indicating
that the linear rate at which ∆q changes for every unit increase in temperature difference
varies significantly across income strata. However, the relationship is less clear-cut com-
pared to the one from precipitation. Compared to the reference group (where the effect
of ∆ZT is 0.004787, meaning a 0.48 percentage point increase in consumption difference
for every unit increase in temperature difference), the 6k-20k stratum’s interaction is not
significant (0.0000941), suggesting its linear temperature sensitivity is not statistically
different from the reference group in this model. The 20k-45k stratum has a significant
positive interaction (0.0004584), making its positive temperature effect slightly stronger
(0.004787 + 0.0004584 = 0.0052454). The 45k-100k and >100k strata have signifi-
cant negative interaction terms (-0.002830 and -0.002834). This means that although
the base effect of temperature difference is positive, the additional positive effect seen in
higher income groups in the first model is now appearing as a reduction in the sensitivity
compared to the reference group’s base sensitivity (0.004787 - 0.002830 = 0.001957 for
45k-100k; 0.004787 - 0.002834 = 0.001953 for >100k).

This difference between temperature and precipitation prompts the research to be more
focused on changing precipitation. In addition, a structural model is used to estimate the
demand on the panel data to show how price, precipitation, and the interaction term with
income strata will affect the demand.

A2. Demand Model and Estimation

ADDITIONAL CASE IN THE UNCONDITIONAL INDIRECT UTILITY FUNCTION

When constructing the unconditional indirect utility function from the conditional
ones, the case where consumption occurs exactly at a tier boundary (kink point), rather
than strictly within a tier, may require clarification. Continuing with the two-tier sce-
nario (K = 2) without loss of generality, this case arises when the household’s optimal
consumption calculated using the tier 1 price, g(p1, I), would exceed the tier 1 limit
q1, *and* the optimal consumption calculated using the tier 2 price and virtual income,
g(p2, I +d2), would fall below q1. That is, the condition is g(p2, I +d2)≤ q1 < g(p1, I)
(assuming d1 = 0 or defined appropriately). To satisfy the Incentive Compatibility (IC)
constraint (i.e., ensure the chosen consumption is utility-maximizing given the full bud-
get set), the household optimally consumes exactly at the kink point q1. The diagram
below illustrates this:

As shown, under the condition g(p2, I + d2) ≤ q1 < g(p1, I), the optimal (incentive
compatible) choice for this household is to consume the bundle corresponding to the
kink point, (q1, I−Bill(q1)). Here, Bill(q1) represents the total water bill incurred when
consuming exactly q1 units (e.g., typically A2 + p1q1 in a two-tier system where A2 is
the fixed charge associated with entering tier 2). If consumption at the kink were not
allowed as an option in the model, such consumers would be incorrectly assigned to
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Figure A3. : The household consumes exactly at the kink (q1, I −Bill(q1))

consume within one of the adjacent tiers, violating the true optimum.
Generalizing, for any tier boundary qk where k ∈ {1, . . . ,K − 1}, some households

might satisfy the condition g(pk+1, I +dk+1)≤ qk < g(pk, I +dk), for whom the optimal
consumption point is exactly (qk, I −Bill(qk)). In our empirical application to Austin,
which has 5 tiers (K = 5), there are 4 such kink points (q1,q2,q3,q4), requiring the model
to allow for consumption exactly at these quantities to ensure incentive compatibility
across the full range of consumption.

LIKELIHOOD FUNCTION

Without loss of generality, I explain the derivation of the likelihood function for a
two-tier case (K = 2); the approach generalizes to K tiers. Conditional on the ex-ante
optimal choice (based on the known preference shock η but ignoring the ex-post error
ν) being tier 1 (k∗ = 1), the condition is logw1+η ≤ logq1. Similarly, k∗ = 2 if logw2+
η > logq1. The remaining possibility, ensuring incentive compatibility and covering
all η , is consumption at the kink q1, which occurs if logw2 +η ≤ logq1 < logw1 +η .
Rearranging these conditions on η and adding the ex-post error ν (unobserved by the
household when choosing the tier/kink), the observed log-consumption log(w) is:

log(w) =


log(w1)+η +ν if η ≤ log(q1)− log(w1)

log(q1)+ν if log(q1)− log(w1)< η ≤ log(q1)− log(w2)

log(w2)+η +ν if η > log(q1)− log(w2)

which is the two-tier special case of Equation 7. Note that since the household does
not observe ν when making its choice, ν affects the final observed consumption in all
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scenarios.
Let f (·) denote a probability density function (pdf). The overall likelihood for an

observation logw is the sum of the contributions from these three mutually exclusive and
exhaustive scenarios (L = L1 +Lkink +L2).

Case 1: k∗ = 1 (η ≤ log(q1)− log(w1)) The observed log consumption is logw =
logw1+η +ν . The contribution to the likelihood depends on the joint pdf of (η +ν ,η),
integrated over the relevant range of η :

L1 =
∫ logq1−logw1

−∞

fν+η ,η(logw− logw1,η)dη

Case 2: k∗ = 2 (η > log(q1)− log(w2)) The observed log consumption is logw =
logw2 +η +ν . The likelihood contribution is:

L2 =
∫

∞

logq1−logw2

fν+η ,η(logw− logw2,η)dη

Case 3: Kink Consumption (log(q1)− log(w1)<η ≤ log(q1)− log(w2)) The observed
log consumption is logw = logq1 +ν . The likelihood contribution depends on the joint
pdf of (ν ,η), integrated over the relevant range of η :

Lkink =
∫ logq1−logw2

logq1−logw1

fν ,η(logw− logq1,η)dη

If I assume η ∼ N(0,σ2
η) and ν ∼ N(0,σ2

ν ), and that they are independent, these
integrals can be solved in closed form. Let φ(·) and Φ(·) be the standard normal pdf
and cdf, respectively. The joint distribution of (η ,ν +η) is bivariate normal. Let ρs =

Corr(η ,ν +η) = ση/
√

σ2
η +σ2

ν .
Evaluating the first integral (L1):

L1 =
∫ logq1−logw1

−∞

fν+η(logw− logw1) fη |ν+η(η | logw− logw1)dη

= fν+η(logw− logw1)
∫ logq1−logw1

−∞

fη |ν+η(η | logw− logw1)dη

=
1√

σ2
η +σ2

ν

φ

 logw− logw1√
σ2

η +σ2
ν

Φ

(logq1 − logw1)/ση −ρs(
logw−logw1√

σ2
η+σ2

ν

)√
1−ρ2

s


≡ φ(s1)√

σ2
η +σ2

ν

Φ(r1)

where s1 =(logw− logw1)/
√

σ2
η +σ2

ν and r1 =(t∗1 −ρss1)/
√

1−ρ2
s with t∗1 =(logq1−

logw1)/ση .
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Similarly, evaluating the integral for the second case (L2):

L2 = fν+η(logw− logw2)
∫

∞

logq1−logw2

fη |ν+η(η | logw− logw2)dη

= fν+η(logw− logw2)

1−Φ

(logq1 − logw2)/ση −ρs(
logw−logw2√

σ2
η+σ2

ν

)√
1−ρ2

s


≡ φ(s2)√

σ2
η +σ2

ν

(1−Φ(n2))

where s2 =(logw−logw2)/
√

σ2
η +σ2

ν and n2 =(m1−ρss2)/
√

1−ρ2
s with m1 =(logq1−

logw2)/ση .
Finally, evaluating the integral for the third case (kink consumption, Lkink), using the

independence of ν and η :

Lkink =
∫ m1ση

t∗1 ση

fν(logw− logq1) fη(η)dη = fν(logw− logq1)
∫ m1ση

t∗1 ση

fη(η)dη

=
1

σν

φ

(
logw− logq1

σν

)[
Φ

(
m1ση

ση

)
−Φ

(
t∗1 ση

ση

)]
=

φ(u1)

σν

(Φ(m1)−Φ(t∗1))

where u1 = (logw− logq1)/σν .
Summing the three components gives the likelihood for the two-tier case:

L = L1 +Lkink +L2

=
φ(s1)√
σ2

η +σ2
ν

Φ(r1)+
φ(u1)

σν

(Φ(m1)−Φ(t∗1))+
φ(s2)√
σ2

η +σ2
ν

(1−Φ(n2))

Using the general definitions t∗k = (logqk − logwk)/ση , mk = (logqk − logwk+1)/ση ,

sk = (logw− logwk)/
√

σ2
η +σ2

ν , uk = (logw− logqk)/σν , rk = (t∗k − ρssk)/
√

1−ρ2
s ,

nk = (mk−1 −ρssk)/
√

1−ρ2
s , and applying boundary conditions (m0 →−∞ =⇒ n1 →

−∞ =⇒ Φ(n1) = 0; q2 → ∞ =⇒ t∗2 → ∞ =⇒ r2 → ∞ =⇒ Φ(r2) = 1), this derived
likelihood function matches the general form given in Equation 8 for K = 2.

NDVI

The use of the Normalized Difference Vegetation Index (NDVI) for estimating water
demand was introduced by Wolak (2016). The essential idea is to quantify vegetation
health for specific geographical locations – in this case, the health of lawns associated
with single-family homes. Higher NDVI values indicate healthier vegetation, suggesting
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greater lawn care efforts.
NDVI is calculated from satellite imagery using the difference between the reflectance

in the near-infrared (NIR) and red light bands. Healthy plants typically reflect more NIR
light and absorb more red light (appearing green), while less healthy or stressed plants
reflect less NIR and more red light (appearing yellow or brown). The index is typically
calculated as (NIR - Red) / (NIR + Red), normalized to a range between -1 and +1, where
higher values indicate healthier, denser vegetation. Values near -1 often correspond to
water bodies. Values around 0 typically represent bare soil or sparse vegetation, and
values approaching +1 indicate dense, healthy vegetation like forests or well-maintained
lawns.

The raw data I use is the Sentinel-2 Surface Reflectance dataset,35 providing imagery
with a 10m x 10m spatial resolution (pixel size). Since typical residential lots in Texas
are larger than this pixel size, this higher resolution allows for a more precise calculation
of NDVI within each lot compared to the 30m x 30m resolution used by Wolak (2016).
Sentinel-2 images are collected frequently (on average, every 5 days for a given location),
though not always regularly, resulting in multiple images per month. Some images,
however, contain areas obscured by clouds. To address this, I employ cloud masking and
create monthly composite images.36 The cloud masking algorithm utilizes bands of the
images, such as the “Cloud Probability” or “QA”. These bands indicate the likelihood
of cloud cover or contain bitwise flags for clouds and shadows. To create a cloud-free
composite, I apply these masks to filter out cloudy pixels from multiple images over all
images of a calendar month of the same area, then merge the remaining clear-sky pixels
into a seamless, cloud-free composite.

To visually illustrate the process of calculating NDVI in Figure A4, I take a small
sample from the Brentwood neighborhood in Austin, near the intersection of W Koenig
Lane and Burnet Road. While detecting subtle vegetation differences can be difficult
in the raw satellite image, the corresponding NDVI visualization clearly showcases the
variations in vegetation health between households.

SUMMARY STATISTICS

After matching the panel data with TCAD records, filtering outliers, and removing
households located outside Travis County (and thus likely outside the Austin Water ser-
vice area), the final dataset primarily covers the period from May 2018 to December
2019. It is important to note that this data includes households on slightly different
payment plans. Specifically, some households meeting certain income requirements are
eligible for CAP, which offers lower marginal prices. The inclusion of CAP households
provides valuable price variation for model identification, despite their small number.
The summary statistics can be found in Table A4.37

35If using Google Earth Engine to access data, please refer to Google Earth Engine Sentinel-2 Surface Reflectance.
36Details for cloud masking in Google Earth Engine can be found here Cloud Masking - gee map.
37Overall, approximately 60% of households and 55.84% of transactions from the original data are used for the demand

estimation analysis. Among the final sample, 99.57% are non-CAP consumers, and 0.43% are CAP consumers.

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED
https://developers.google.com/earth-engine/tutorials/tutorial_api_05
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Figure A4. : The Process of Calculating NDVI

Note: From Top Left to Bottom Right: OpenStreetMap base map; OpenStreetMap with household lot shapefiles
overlaid; Sentinel-2 Raw Image mosaic with shapefiles overlaid; and final NDVI visualization derived from Sentinel-2
with shapefiles overlaid.

Table A4—: Summary Statistics

Parameter Name Min 1st Quartile Median Mean 3rd Quartile Max N
Heavy Water Appliances 0 0 0 0.1637 0 12 127320
Bedrooms 1 1 1 1.439 1 31 127320
Bathrooms 0.1 2 2 2.427 2.5 34 127320
Lot Size (Acre) 0.02136 0.15018 0.19060 0.27396 0.25309 278.25085 127320
Household Monthly Income (k$) 1.2 8.642 15.320 29.295 27.765 5057.051 127320
NDVI -0.3564 0.3266 0.4038 0.3988 0.4766 0.7729 2351626
Mean Max Temp (F) 56.24 68.98 83.74 82.18 95.04 101.65 2351626
IQR Max Temp (F) 2 4.984 9.499 9.904 14.217 25.334 2351626
Total Precip (Inches) 0 1.009 2.550 2.967 4.349 13.819 2351626
IQR Precip (Inches) 0 0.004724 0.034655 0.158315 0.238235 2.434279 2351626
Quantity (kGal) 0.1 2.6 4.3 6.537 7.4 1275.8 2351626
Payment ($) 8.426 19.118 27.436 57.746 53.074 17577.749 2351626

Note: Heavy Water Appliances include pool, hot tub, sprinkler system, fountain, and car wash station/area. In the real
estate industry, a full bathroom requires a sink, a tub, a shower, and a toilet. If it only has 3/4 of fixtures, it will
constitute a 3/4 bathroom, and only 2/4 fixtures will constitute a half bathroom.
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MLE ESTIMATION RESULT

Given the model with the interaction terms, the MLE estimates the parameters (β ′
1,β

′
2,β

′
3,

β ′
4,β

′
5,c,cα ,cρ ,ση ,σν ) from data (Xi,Zi,Xα,i,Zα,i,Xρ,i, pk,qk,Ak, Ii,wi), with a total of 18

parameters. All data measuring price or payment are scaled from nominal value to real
dollar value in January 2017 using the Federal Reserve Economic Database Gross Do-
mestic Product (GDP) deflator from St Louis Federal Reserve Bank. 38 The estimation
results are listed in Table A5:

Table A5—: MLE Estimation Results

Parameter Name Estimate Standard Error Parameter Name Estimate Standard Error
Bathroom 1.16 (9.20E-04) Average High Temp 0.00218 (2.04E-05)
NDVI 1.19 (0.011) IQR High Temp -0.0189 (1.46E-04)
Constant 0.731 (0.0017) Total Precipitation -0.941 (1.34E-04)
Price * bedroom 0.0486 (3.94E-04) IQR Precipitation 0.12 (0.005)
Price * NDVI -0.0404 (0.00465) Income * Heavy Water Appliances -0.0718 (4.81E-04)
Price * Avg High Temp -0.0168 (2.47E-05) Income * Bedroom -0.0158 (5.34E-05)
Price * Total Prcp -0.0363 (4.23E-04) Income * NDVI -0.0692 (3.91E-04)
Price 0.688 (0.00193) Income 0.162 (1.67E-04)
ση 2.56 (8.45E-04) σν 4.71E-04 (2.25E-03)

Note: Price * bedroom represents the interaction term inside α , measuring how the price effect is changed through the
number of bedrooms. The same goes for other interaction terms for price and income.

Most results of MLE fit the intuition qualitatively. The standard error is calculated
by the inverse of the matrix of the sum of the outer products of the observation-by-
observation gradient of the log-likelihood for each household evaluated at the maximum
likelihood parameter estimates, a method introduced by Hall, Hall and Hausman (1974).

PRICE ELASTICITIES OF INCOME STRATA

From Section III.C, I have shown the counter-intuitive result that high-income house-
holds are more elastic when the weather is dry. For high elasticity households to pose a
“threat” to the pricing design, they will need to be high quantity users as well. I then plot
the price elasticity on quantity for all strata.

From Figure A5, there are plenty of higher-income, high elasticity households with
large quantity. In the highest income stratum, 14.4% of the households have the elas-
ticity lower than the overall median and have the quantity to be larger than 20k gallons.
In addition, there are a decent number of lower-income households that have pretty high
consumption levels with not very high elasticities. Both the mismatches between income
and quantity, and income and elasticity, explain the reduced-form evidence from 2, and
weather is one of the factors that causes these mismatches. This can be a potential mech-
anism explaining the findings from previous literature 39 where they conclude that IBP

38See Fred-GDPDEF
39Ruijs, Zimmermann and van den Berg (2008), Echeverri (2023), and Wichman (2024)

https://fred.stlouisfed.org/series/GDPDEF
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Figure A5. : Price Elasticities v. Mean Quantity by Income Strata

optimization will likely favor higher income strata. Essentially, I would like the utili-
ties to be aware of the price sensitivities of higher income strata, as the higher paying
consumers are not actually “reliably” contributing towards the revenue, as well as the
existence of the low elasticity-high quantity households in the lower income strata, as
these consumers who should be benefiting from the equity goal, could potentially suffer
from other competing policy goals.

One important caveat for this study (and further discussion of distributional results)
is that the household income I calculated actually stemmed from the correlated house
value. Even though it has been proven to be generally true40, it is a strong assumption
to assume the same distribution of house value and household income within the same
zipcode. However, later during the counterfactual analysis, I conduct a specification with
only the newly built houses, such that their appraisal value will be generally higher, and
still find that welfare for the lowest income stratum is much lower compared to other
strata. The result can be found in Section A.A4.

A3. Ramsey Pricing Model

STATUS QUO REVENUE AS THE THRESHOLD

I will explore the validity of using the status quo revenue as the lower bound for coun-
terfactual revenue in this section. Due to the lack of detailed cost breakdown data, it
would be difficult to establish a supply-side cost model. However, by using aggregate
cost information, I can make some inferences. In order to study the financial viability

40See Zhang (2016), and Kim (2020)
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of Austin Water, I need to ensure that total revenue can cover total costs. However, total
water service revenue is only a portion of Austin Water’s overall revenue stream. Fur-
thermore, the revenue I observe in this data represents only single-home residential water
revenue, which itself is only a portion of total water service revenue. Nonetheless, water
service revenue is typically the largest revenue stream (> 70%), and single-home hous-
ing usage usually constitutes the largest part of total water service revenue (> 50%). In
particular, single-home housing usage is most susceptible to precipitation variation be-
cause multi-home housing is typically in condominiums, which do not have lawns, and
commercial usage usually does not vary with changes in precipitation. Therefore, it is
valid to use single-home housing to study the impact of weather, and compare the total
revenue from single-home housing usage to some threshold to measure the revenue risk
faced by the utility due to weather variation.

However, the lack of detailed cost information makes it hard to estimate the cost gen-
erated solely by single-home housing. The total costs from water services include op-
eration, labor, debt service requirements, and funds transferred to the city government.
None of these can be separated and attributed solely to single-home housing usage.

Figure A6. : Total Cost and Revenue from Water Service

Note: Austin Water releases its financial report irregularly, but on average, every 3 months. During some time between
January 2017 and May 2017, they released the report every month. Hence, some data have a monthly frequency, and
some do not.

Looking at the seasonal trends from quarterly financial reports of water service revenue
in Figure A6 and cost, I can see that the cost for the whole year is relatively stable. The
only peak is usually around the summer months when the water supply is lower and
requires more water from the reservoir. The main reason for negative profit in water



WATER UTILITY PRICING AND DIFFERENT WEATHER PATTERNS 49

service is that revenues in some months fall below the typical cost level during non-
peak months. Therefore, the financial risk faced by the utility is largely due to revenue
volatility between months. Therefore, it is reasonable to set up a revenue lower bound
for comparison with counterfactual revenues. I could set up an intricate cost model to
estimate this lower bound, but the status quo revenue (which is the revenue of the year
2019, and the weather variation in 2019 was quite standard) serves as a good enough
benchmark.

SIMULATE WEATHER DISTRIBUTION

It is tricky to evaluate EZ without the knowledge of the real distribution of Z. This is
due to 1) if limited to recent years of Z data, there are too few data points to empirically
generate the real distribution of Z, and 2) if expanding to long-term data of Z, the weather
data 30 years ago does not share the macro climate trends of the recent weather data.
Unfortunately, truly predicting the weather is out of the scope of this paper, but I offer
an alternative solution to estimate the optimal price based on the prior of the utility. In
addition, in one of the specifications, I used a Monte Carlo method to simulate weather
prediction errors and the optimal result does not deviate that much.

The counterfactual weather is generated from a prior shift from the utility. If the utility
thinks next year’s weather is on average more rainy, then ζ1 > 0 and vice versa. If the
utility thinks next year’s weather is on average higher in variance, then ζ2 > 1. The utility
will treat this counterfactual Z as the static weather and then calculate the optimal price.

Adding a Monte Carlo small log-normal disturbance will simulate the prediction error
and the result is more realistic. I generate a small log-normal disturbance with µ = 0 and
σ = 1. The σ = 1 is calculated from the standard deviation of the strictly positive pre-
cipitation data from the recent 5 years (2014-2018). This means the utility first predicts
a general trend of precipitation data, it could be either Z′ = Z±ζ1 or Z′/Z = ζ2, and then
in order to account for prediction errors, Z′ is perturbed by a small log-normal error term
to simulate the stochasticity of Z′ based on the utility’s prediction.

The Monte Carlo process is calculated as follows: for each simulation s, the utility
will calculate both the objective (CS(Zs)−λ ·max(0,C−Rs(Zs)) and the conservation
constraint (P(∑q(Zs) ≤ Q̄) ≥ 0.95) and take the average of all numbers of simulations.
Essentially, the utility is maximizing over the average objective for all the simulations,
while making sure the average quantity for all simulations is below the threshold. One
might question why not average over all simulated months, with a total number of sim-
ulated data points to be s · 12. It is hard to imagine the utility optimizing on a monthly
basis, even though it could generate more data points. On the other hand, it is reasonable
to assume that the utility would need to check the projected overall welfare and projected
revenue condition by the end of their financial year. Averaging the yearly objective for all
simulations essentially calculated the expected objective for the utility under the weather
stochasticity. Due to the long running time, I eventually chose s = 25 as a start. The
resulting optimal prices do not change significantly compared to Figure 9 and Figure
10. This showcases that the baseline model gives a consistent measurement of the first
moment of weather stochasticity.
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A4. Counterfactual Analysis

COUNTERFACTUAL NDVI

As NDVI measures the health of vegetation, it would not make sense to keep it un-
changed through shifting counterfactual precipitation. To isolate the effect of precipi-
tation on NDVI, I conducted an OLS using the following formula, where P represents
precipitation and T represents daily max temperature:

NDV I = β0 +β1Psum +β2Piqr +β3Tmean +β4Tiqr +β5I

Note that both the mean and IQR here refer to the within-month mean and IQR. For this
paper, I focus on the variance of the monthly sum of precipitation (Psum); therefore, while
keeping all the other variables unchanged, the parameter of interest will be β1. The OLS
results are as follows:

Table A6—: OLS Estimation Results of Precipitation on NDVI

Variable Estimate Std. Error t value Pr(> |t|)
(Intercept) 0.1149 0.0010 92.940 < 2e-16 ***
Psum 0.0080 0.000045 177.803 < 2e-16 ***
Piqr −0.0118 0.0004 −29.460 < 2e-16 ***
Tmean 0.0030 0.000012 256.693 < 2e-16 ***
Tiqr 0.0013 0.000032 40.768 < 2e-16 ***
I (in millions) 1.449 1.3 114.940 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Multiple R-squared: 0.127, Adjusted R-squared: 0.127
F-statistic: 3.935e+04 on 5 and 1,356,918 DF, p-value: < 2e-16

This regression captures the impact of precipitation on vegetation health ecologically.
The only control variable included is income to capture the size of the lawn for each
household. This means for every change in precipitation in inches, the NDVI will in-
crease by 0.008, keeping demand and income the same. Through the calculation of
counterfactual NDVI, I can calculate the counterfactual demand, welfare, etc.

OPTIMAL PRICE PROCEDURE

Given the counterfactual weather and NDVI, household characteristics, and income, I
will use Equation 12 to solve for the optimal price of 14 parameters. All parameters are
part of IBP; therefore, I set all prices to be larger than 0, and force each step to be increas-
ing for both marginal prices and fixed payment (meaning the difference between each tier
will at least be $0.01). The optimization algorithm I used is COBYQA, a derivative-free
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optimization solver designed to supersede COBYLA to solve for the bounded optimiza-
tion process. In essence, COBYQA is a trust-region SQP method based on quadratic
models obtained by underdetermined interpolation.41. Of all the constrained optimiza-
tion algorithms, COBYQA consistently can provide reliable results as long as the initial
value is within the valid range with respect to constraints.

Since I am dealing with price optimization, I do not require very refined results. I chose
the initial searching radius of the algorithm to be 1.0, and the final radius for convergence
tolerance to be 0.01 (as the lowest price difference will be in cents). I also utilize putting
the loss function in the objective function in addition to the conservation constraint to
avoid optimizing on 2 constraints at the same time (since otherwise, without the loss
function, both constraints will need to be implemented). I choose to set the initial value
as if each price jump is the same between tiers to intensify the certain benefit of more
salient price jumps between certain tiers. Since COBYQA is good at finding relatively
local results, I choose the initial value to be close to the status quo IBP.

Aside from weather stochasticity, I set up a Monte-Carlo simulation for ε using the
result from Table A5. Note that there are two levels of stochasticity with unobserved taste
(η) and perception error (ν). The perception error is purely random and not controlled
by the household, so for each household for each month, I will generate a simulation for
νmh. As for η , I assume each household has an unchanged η̄h across all months to avoid
overfitting and simulate the results. I have tried using ηmh, the counterfactual welfare
generates very little difference between specifications.

PRICE RESULT - MEAN SHIFT

Since the 5-tier IBP includes both marginal prices and fixed payments, I argue the most
effective way to visualize the pricing structure is by plotting total payment (in dollars)
versus quantity (in thousand gallons). Note that all plots are truncated at 50 k gallons
to focus on the changes around the majority of the data points. In practice, a decent
number of consumers use significantly more than 50 k gallons. In this subsubsection, I
will only focus on ζ1 and only showcase the result of ζ1 = −0.25 and ζ1 = 0.25. The
results of non-extreme weather conditions in between fit the general trend and are omitted
for clarity. All price plots include three benchmarks derived from the status quo. The
status quo price (shown with a dot-dash line) reflects the current pricing structure used
by Austin Water. The status quo flat price is constructed by averaging the five marginal
prices and five fixed payments, resulting in a linear pricing structure. I also include the
empirical cdf of the quantity to showcase the change in distribution.

From Figure A7, when ζ =−0.25, weather pushes the demand curve to the right, but
the binding conservation constraint actively curb high quantity users, making the price
for the higher tier much higher, and quantity distribution for higher quantity (> 20k
Gallons) shifts to the left. The rising price for the higher tier causes welfare loss for the
high quantity users, and the existence of the high-quantity-low-income users generating
the regressive welfare effect from pricing.

41The algorithm is developed by Ragonneau (2022), Ragonneau and Zhang (2025)



52 WATER UTILITY PRICING AND DIFFERENT WEATHER PATTERNS

Figure A7. : Optimal Prices - ζ1 =−0.25

Figure A8. : Optimal Prices - ζ1 = 0.25
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From Figure A8, when ζ = 0.25, weather pushes the demand curve to the left. Since
the revenue loss is less in priority for the utility (λ = 0.5), and the existence of high-
quantity-low-income users push the price downward for all tiers. Even with the price
decrease, the demand curve still shifts to the left, as evidenced by the empirical cdf.

PRICE RESULT - VARIANCE SHIFT

When changing ζ2 (the ratio of weather standard deviation compared to the status quo),
I will only focus on the extreme cases of ζ2 = 0.75 and ζ2 = 1.25.

Figure A9. : Optimal Prices - ζ2

From Figure A9, when ζ = 0.75, the quantity distribution shifts towards the median.
However, since the status quo (and the counterfactual) quantity distribution is right-
skewed, the quantity in general decreases. This will result in a similar situation of ζ1 > 0
where the revenue losses are more pressing, which will in turn result in an increase in
prices across all tiers.

From Figure A10, when ζ = 1.25, the quantity distribution becomes more spread out.
Due to the right-skewness of the data, the quantity in general increases. This will result
in a similar situation of ζ1 < 0 where the conservation constraint is binding. However,
what is different from the cases of ζ1 < 0 is the decreasing quantity in even drier months,
making the price for lower tiers higher due to the financial risks during the now even
drier months.

WELFARE RESULTS OF DIFFERENT BUILT YEARS - ROBUSTNESS CHECK

One of the concerns regarding the welfare result is that, since I am essentially equat-
ing house value to household income. There could be some mis-categorization where
a household built early with a low appraisal value, but actually has a higher income. I
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Figure A10. : Optimal Prices - ζ2

am going to test the counterfactual analysis with the welfare from the optimal price in
shifting mean and extend the result from Figure 9 with different segments of the house-
holds cohort. I will test two specifications: 1) limiting to only the houses built after 2000,
which is the top 27.4% of the entire cohort, and 2) limiting to only the houses built after
1982, which is the top 50% of the entire cohort. Since the lowest income stratum will
have the largest welfare swing, I will only limit the welfare result of that stratum.

Figure A11. : Welfare from Status Quo Price in Shifting Mean (ζ1 ∈ [−0.25,0.25])



WATER UTILITY PRICING AND DIFFERENT WEATHER PATTERNS 55

When comparing to the full sample, both specifications still generate comparable wel-
fare results, and limiting to houses with the built year in the top 50th percentile even
generates lower welfare. When ζ1 =−0.25 (the demand shifts to the right), the full sam-
ple has an average EV/I for the lowest income stratum of −4.11%, while 1) limiting to
only the houses built after 2000 (the 27.4 th percentile) has an average EV/I for the lowest
income stratum of −3.45%, and 2) limiting to only the houses built after 1982 (the 50 th
percentile) has an average EV/I for the lowest income stratum of −4.75%. The fact that
limiting the sample to above the median generates even lower welfare, showcasing that
the way of estimating income (namely, extrapolating the zip-code level income by house
value distribution) is largely accurate, and the welfare result from Figure 9 is robust.

As for the shadow cost of the policy constraints, when ζ1 =−0.25, the shadow cost of
the conservation constraint incurs an average welfare loss of $60.92 per household per
month for the lowest stratum for the full sample42. For specification 1), which is limited
to houses built after 2000, the same weather conditions and the welfare result imply an
average welfare loss of $60.89 per household per month for the lowest stratum. For
specification 2), which is limited to houses built after 1982, the same weather conditions
and the welfare result imply an average welfare loss of $72.94 per household per month
for the lowest stratum.

When ζ1 = 0.25, the shadow cost of the revenue constraint incurs an average welfare
loss of $63.65 per household per month for the lowest stratum for the full sample. For
specification 1), the same weather conditions and the welfare result imply an average
welfare loss of $63.08 per household per month for the lowest stratum. For specification
2), the same weather conditions and the welfare result imply an average welfare loss
of $70.82 per household per month for the lowest stratum. The fact that the welfare
damages from the shadow cost of the policy constraints between specification 1 and the
full sample are so similar showcases the robustness of my results, and using the house
appraisal value to back out income won’t bias the results.

I calculate the shadow costs of the policy constraints for the two specifications as the
robustness check of the result of shifting variance. When ζ2 = 0.75, the shadow cost of
the conservation constraint incurs an average welfare loss of $67.19 per household per
month for the lowest stratum for the full sample. For specification 1), the same weather
conditions and the welfare result imply an average welfare loss of $65.72 per household
per month for the lowest stratum. For specification 2), the same weather conditions and
the welfare result imply an average welfare loss of $74.30 per household per month for
the lowest stratum. When ζ2 = 1.25, the shadow cost of the conservation constraint
incurs an average welfare loss of $74.87 per household per month for the lowest stratum
for the full sample. For specification 1), the same weather conditions and the welfare
result imply an average welfare loss of $75.96 per household per month for the lowest
stratum. For specification 2), the same weather conditions and the welfare result imply
an average welfare loss of $84.82 per household per month for the lowest stratum.

42See SectionV.C
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STATUS QUO PRICE - WEATHER CHANGE

In order to separate the welfare loss from weather itself and the welfare loss from
the shadow cost of the policy constraints, I calculate the welfare using the status quo
price vector p0 under all counterfactual weather conditions (ζ1 ∈ [−0.25,0.25],ζ2 ∈
[0.75,1.25]). Here are the welfare result for the mean shift (ζ1 ∈ [−0.25,0.25]) and
variance shift (ζ2 ∈ [0.75,1.25]):

Figure A12. : Welfare from Status Quo Price in Shifting Mean (ζ1 ∈ [−0.25,0.25])

I can see the clear shift of the demand curve through the weather and how it’s affecting
both total quantity and total payments from all strata for both cases of shifting mean and
variance. Without the optimal pricing procedure considering the policy constraints, it
will be difficult to curb consumption when ζ1 < 0 and lower bound the revenue when
ζ1 > 0. However, the upside of not including the policy constraint is an increase in
welfare, in particular, a significant increase in welfare for the lowest income stratum.

HIGH QUANTITY CONSUMERS

There are plenty of high quantity consumers, but what truly makes the equity goals of
the optimal price hard to achieve is the existence of high quantity consumers in lower
tiers. I have already explored the existence of these consumers in the data, but here
I would like to specifically show the welfare loss incurred by these customers in the
lowest stratum (0∼6k) and compare it to the highest stratum (>100k). I will focus on
the specific weather pattern of ζ1 = −0.25 where the welfare for the lowest stratum is
the lowest.

From this picture, I can clearly see that the magnitude of welfare losses is higher in
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Figure A13. : Welfare from Status Quo Price in Shifting Variance (ζ2 ∈ [0.75,1.25])

Figure A14. : EV when - ζ1 =−0.25, 0 ∼ 6k and >100k strata



58 WATER UTILITY PRICING AND DIFFERENT WEATHER PATTERNS

the higher income strata across different quantity levels. However, if I measure EV/I,
which is a fairer measurement of welfare across income strata:

Figure A15. : EV/I when - ζ1 =−0.25, 0 ∼ 6k and >100k strata

Even though the higher income stratum loses more welfare, the high quantity users
(those higher than 20k gallons), and their relatively low elasticities, cause lower welfare
in extreme weather conditions for the lowest income stratum.

To separate the heterogeneities of the quantity, and since income turns out to be a
problematic predictor of quantity. I performed a reduced-form logit regression to figure
out the source of the heterogeneity. I define high quantity transactions as > 20k gallon
and only limit to the lowest income stratum. I include some predictors from the demand
model, as well as variables like HVAC category (a categorical variable labeling the size
of the house), lawn percentage (a continuous variable measuring the percentage of the
lot size not counted as living areas), and the interactions with precipitation. Here is the
equation and the result.

1{High Quantity}= house value+precipitation+NDVI+bathroom+bedroom
+ spa area+heavy water app+HVAC category+ lawn percentage
+precipitation×house value+precipitation×NDVI
+precipitation×bathroom+precipitation×bedroom
+precipitation× spa area+precipitation×heavy water app
+precipitation×HVAC category+precipitation× lawn percentage
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Table A7—: Logit Regression Model of Predicting High Quantity for Low-Income
Households

Main Effects Interaction Terms

Predictor Est. Std. Err. z val. Predictor Est. Std. Err. z val.

(Intercept) -1.031∗∗∗ 0.138 -7.458 Precipitation : house value 0.002∗∗∗ 0.000 21.639
house value (k$) -0.004∗∗∗ 0.000 -38.242 Precipitation : NDVI -0.369∗∗ 0.125 -2.965
Precipitation (Inch) -2.345∗∗∗ 0.138 -17.061 Precipitation : bathroom -0.066∗∗∗ 0.017 -3.902
NDVI 5.294∗∗∗ 0.129 41.048 Precipitation : bedroom 0.002 0.015 0.112
bathroom 0.209∗∗∗ 0.019 10.892 Precipitation : spa area -0.001∗∗∗ 0.000 -10.222
bedroom -0.016 0.016 -0.996 Precipitation : heavy water app 0.110 0.152 0.723
spa area (sqft) 0.003∗∗∗ 0.000 13.203 Precipitation : HVAC Med-Low -0.104∗∗ 0.033 -3.101
heavy water app (sqft) -0.091 0.199 -0.458 Precipitation : HVAC Med-High 0.037 0.039 0.967
HVAC Med-Low 0.414∗∗∗ 0.032 12.944 Precipitation : HVAC High 0.128∗∗ 0.048 2.691
HVAC Med-High 0.696∗∗∗ 0.042 16.721 Precipitation : lawn percentage 0.472∗∗ 0.155 3.036
HVAC High 1.009∗∗∗ 0.057 17.739
lawn percentage 0.212 0.156 1.361

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. Est. = Estimate, Std. Err. = Std. Error, z val. = z value.

For households in the lowest-income stratum. Higher living area, more attention to
lawn (NDVI), more bathrooms, and larger pool/hot tub areas (in sqft) are all strong pre-
dictors of increased water use. House value has a negative coefficient. Based on my
assumption to correlate house value with house income, and the conclusion that income
is not a strong predictor of heterogeneity, this is not entirely surprising. This showcases
that some households with low house value (which means low income) have very high
quantities. The influence of these factors changes with precipitation: the impact of vege-
tation is most pronounced in dry conditions, while the effect of lawn percentage and the
consumption gap between the largest and smallest homes becomes more significant in
wetter climates. Therefore, for the cases of dry weather conditions, where welfare loss is
the largest, NDVI is a good predictor for the heterogeneities of high water consumption,
and zeroscaping is a natural additional policy to remedy the impact from NDVI. Further
studies could be extended towards the impact of bathrooms and larger pool/hot tub areas
and their related policy impacts.


